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Abstract: Surface plasmon amplification by stimulated emission of radiation (SPASER) is 
discovered and used for realizing lasers at nanometer scale. The conventional gain media that 
are applied in SPASER are solid materials, such as organic dye or semiconductor, which 
limits the frequency range of SPASER. The free electrons could be considered as a kind of 
gain medium for emitting radiation. Here, we investigate theoretically the SPASER, which is 
excited by free electrons. We also demonstrate the tunable, deep-ultraviolet, and ultracompact 
laser numerically by having free electrons interact with surface plasmon polariton mode 
supported on metal surface. The output power density could reach about 30 W/μm2 and the 
wavelength in deep ultraviolet could be widely tuned by varying the electron energy. This 
work offers a way of realizing integrated free electron laser in the ultraviolet frequency 
region. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement  

1. Introduction

Surface plasmon polariton (SPP) is the resonant oscillation between electrons on metal 
surface and electromagnetic (EM) wave [1,2]. For the special characteristics, it attracts great 
attention in recent years for the potential applications of sensing [3–5], integrated optical 
circuit [6,7], and nanoscale laser [8–10]. By introducing gain medium adjacent to metal, the 
surface plasmon amplification by stimulated emission of radiation (SPASER) was discovered 
and used for realizing lasers at nanometer scale with remarkable advantages [8–16]. However, 
the previous plasmonic lasers were based on gain medium like organic dye or semiconductor 
which emits SPP mainly in near-infrared and visible frequency region [8–10,12–15]. 
Restricted by the gain medium, it seems hard to greatly shorten the vacuum wavelength of 
SPASER to deep ultraviolet and tune the wavelength in a wide range. 

Free electrons flying in free space or media could be considered as a super broadband 
evanescent light source [17] and generate EM radiation such as Cherenkov radiation [18–20] 
and Smith-Purcell radiation [21]. Having free electrons fly around metal structure, the 
plasmonic mode could be excited and the dispersion relation of SPP [22], the damping of 
localized surface plasmon mode [23], and the plasmonic nano-cavity properties [24] have 
been studied. Recently, the surface polariton Cherenkov source [25] and Smith-Purcell 
radiation in plasmonic crystals [26] provide new ways for free electron light sources. In these 
previous works, the plasmonic mode has no feedback on the free electrons and no stimulated 
effect could happen. While in the process of stimulated Cherenkov radiation [27] and Smith-
Purcell radiation [28], the radiation generated by free electrons results in bunching of free 
electrons and then the stimulated emission occurs. Based on stimulated Cherenkov radiation 
and Smith-Purcell radiation, the free electron laser could be realized [27–32]. 

In this paper, inspired by the SPASER [11] and the stimulated Cherenkov radiation with 
free electrons modulated by EM radiation [27,29–32], we propose a SPASER with the free 
electrons as gain medium based on the stimulated effect between free electrons and plasmonic 
mode. We investigate theoretically the free electrons excited SPASER and demonstrate 
numerically the tunable, deep-ultraviolet, ultracompact laser by having free electrons interact 
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Then we keep ω = ω0 and seek solution for kz. Around the intersection point, kz could be 
expressed as kz = kz0 + δk and δk<<kz0 is assumed. From Eq. (2), we have 
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where ( )22
0 0 0 / ,y zh k cω= − and the differentiation with respect to kz is carried out at kz =

kz0. For n = 1, the negative imaginary part of δk is defined as spatial growth rate α, which 
indicates that a growing SPP wave is excited by the electron beam. The spatial growth rate α 
could be derived as: 
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(4)

Because propagation loss of SPP αloss (the imaginary part of kSPP) cannot be ignored here, we 
define the net spatial growth rate as g = α-αloss. 

Assuming the electron-metal gap is b = 50 nm and the metal is Al with negative 
permittivity εm in UV region [33], Fig. 3 shows the calculated result of net spatial growth rate 
g according to Eq. (4) for different frequency and current density of electron beam. It can be 
seen that g increases with the current density of electron beam from 105 A/μm to 107 A/μm. 
With the same plasma frequency of electron beam, the corresponding current densities in the 
three-dimension (3D) model for simulation in the next section could be calculated [34] and 
presented in the parentheses. The positive net spatial growth rate g in UV guarantees that 
initially weak SPP will eventually lead to powerful output intensity. When current density is 
below 105 A/μm (0.1 A/μm2), the SPP mode can hardly get positive g due to the propagation 
loss. As discussed in Fig. 2(b), for different electron energy E0 (velocity ν0), the frequency ω 
of excited SPP is different shown as inset in Fig. 3. The corresponding gain α of SPP is 
mainly decided by the photonic density of state of SPP mode [20,35], which increases as 
frequency close to the surface plasmon resonant frequency (ωSP) around 2400THz. 
Meanwhile the propagation loss increases rapidly at high frequency over 2300 THz (excited 
by electron with E0<130 keV) leading to the sharp decrease of g with E0 as shown in Fig. 3. 
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electron beam bunching, output power and spectrum width. It is demonstrated numerically 
that, for electron beam of 100keV and 1A flying on Al surface, the SPASER with wavelength 
of λ0 = 126 nm, spectrum width (FWHM) less than 2 THz (center frequency 2381 THz, 
FWHM 0.3 nm) and power density over 30 W/μm2 is obtained. Besides, the output 
wavelength could be tuned from 120 nm to 177 nm by modifying kinetic energy of electron 
beam from 50~500keV. While using other metal, the output wavelength of SPASER could be 
altered in a wider range (from UV to visible). The free electrons excited SPASER provides a 
way for realizing tunable and ultracompact laser in deep UV region. 
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