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Identifying Orbital Angular 
Momentum of Vectorial Vortices 
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Stokes Parameters
Dengke Zhang, Xue Feng, Kaiyu Cui, Fang Liu & Yidong Huang

In this work, an explicit formula is deduced for identifying the orbital angular moment (OAM) of 
vectorial vortex with space-variant state of polarization (SOP). Different to scalar vortex, the OAM 
of vectorial vortex can be attributed to two parts: 1. the azimuthal gradient of Pancharatnam phase; 
2. the product between the azimuthal gradient of orientation angle of SOP and relevant solid angle 
on the Poincaré sphere. With our formula, a geometrical description for OAM of light beams can 
be achieved under the framework of the traditional Poincaré sphere. Numerical simulations for 
two types of vectorial vortices have been carried on to confirm our presented formula as well as 
demonstrate the geometrical description of OAM. Furthermore, this work would pave the way for 
precise characterization of OAM charge of vectorial vortices.

It is well-known that light carries both linear and angular momenta while the angular momenta (AM) 
can be divided into spin angular momentum (SAM) and orbital angular momentum (OAM)1–3. Under 
paraxial approximation, it is generally believed that SAM and OAM are associated with polarization and 
spatial profile of the light fields, respectively4. As explicated by Allen et al. in 19925, a scalar vortex field 
with wavefront of φ(− )ilexp  holds discrete OAM of l per photon, where l is the topological charge. 
Thus, for scalar vortices, the topological charge is directly related to the OAM of light beam. However, 
for vectorial vortex fields, even in the paraxial approximation, only the helical wavefront is not sufficient 
to characterize OAM just by utilizing topological charge while the state of polarization (SOP) of light 
field should also be taken into account6,7. As demonstrated by Wang et al. in 20108, besides the azimuthal 
phase gradient, the OAM also can be generated from the curl of polarization in a vectorial vortex field. 
Meanwhile, Hasman et al. declared that there is a link between OAM and geometric phase induced by 
space-variant SOP of light fields9–11. But so far, the explicit relation between OAM and phase distribution 
in vectorial vortex fields is still veiled.

In this work, we have deduced that, for vectorial vortex, the OAM can be attributed to two parts. 
The first is the azimuthal gradient of Pancharatnam phase while the other is the product between the 
azimuthal gradient of orientation angle of SOP and the related solid angle on the Poincaré sphere. 
Numerical simulations have been carried on vectorial vertices generated by superposition of two scalar 
vortex fields and phased array antenna, respectively. Both of them have confirmed our deduced relation. 
It should be emphasized that our deduced formula of OAM charge is expressed with normal Stokes 
parameters so that the traditional Poincaré sphere can be utilized to fully characterize both the SAM 
and OAM. It indicates that geometrical description and characterization of OAM can be achieved by 
adopting the fundamental Poincaré sphere, which is different to previous reports based on multiple 
high-order Poincaré spheres12–14. On the other hand, as measuring Stokes parameters is a standard 
measurement of polarization state, it can be expected that such formula could provide an effective and 
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accurate method for identifying the OAM charge, which is very urgent in practical application of OAM 
beams15–20. Meanwhile, because of the explicit expression between OAM and SOP, we believe that this 
work would provide a new insight of studies on the vectorial vortices, spin-orbit interaction, and such 
related fields21–26.

Results
Theoretical description. Under the paraxial approximation, the electric field of a fully polarized 
vectorial vortex beam with angular frequency ω propagating along z direction in free space can be writ-
ten as27
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where α and β represent the complex amplitude of x− and y− component of electric field, respectively. 
Obviously, such a vectorial vortex beam has space-variant SOP and its z− component of angular momen-
tum density can be calculated and divided into spin and orbital parts in cylindrical coordinate system as
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As demonstrated in Ref. 12, an effective tool to describe the SOP of light is the Poincaré sphere with 
Stokes parameters. Thus, in this work, Stokes parameters and the Poincaré sphere are also introduced to 
deduce the relation between OAM and SOP. In equations (2) and (3), the complex amplitudes of α and 
β can be written as δ( , ) (− ( , ))( ) ( )A x y i x yexpx y x y , where Ax y( ) and x yδ ( ) are amplitude and phase (both 
are real numbers), respectively. Then, the Stokes parameters can be defined as28
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where A A Ix y x y E= /
∼
( ) ( )  are normalized to the electric intensity of I A Ax yE

2 2= +  and s y xδ δ δ= −  is 
the phase difference between x and y components. Then using s1, s2, and s3 as the sphere’s Cartesian 
coordinates, the Poincaré sphere is constructed and its corresponding orientation angle Sψ  of SOP on the 
Poincaré sphere can be resolved by

s stan 2 5S 2 1ψ( ) = / . ( )

With the ratio of angular momentum to energy that is examined by Allen29, the average SAM charge 
and OAM charge of a vortex beam can be calculated. The SAM charge can be solved by calculating the 
SAM density with s3, which directly represents the polarization degree28. While for OAM charge, there 
is no explicit connection with Stokes parameters. According to the feature of space-variant SOP in vec-
torial vortex fields, Pancharatnam phase is adopted to reveal the phase distribution for a vectorial vortex 
beam as shown in Ref. 11. The reason is that Pancharatnam phase can well describe the phase difference 
of lights with different SOP while the OAM is a quantity related to the phase distribution of lights. As 
described in Ref. 30, Pancharatnam phase is defined as ψ = ( Φ Φ )argP A B  between two different SOP 
of ΦA  and ΦB . Based on mode expansion theory, any optical beam can be expanded by right and left 
circularly polarized light, which are written as |Φ 〉 = ( ± )/( ) ˆ ˆx i y 2R L . For the same reason, in the 
paper, the right or the left circularly polarized field is set as a reference field. Then the Pancharatnam 
phase of the investigated vectorial vortex field α βΦ = +ˆ ˆx yE  (defined by equation (1)) to the refer-
ence field is given by

( )ψ = Φ Φ . ( )( ) ( )arg 6R LPR L E

After some derivations (detailed in supplementary information), by applying the orientation angle Sψ  
of SOP on the Poincaré sphere and Pancharatnam phase ψ ( )PR L  defined by equations  (5) and (6), the 
average OAM charge can be resolved as
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In bracket of numerator of equation (7), the first term is the gradient of spiral spatial phase, which 
is the topological Pancharatnam charge similar to definition in Ref. 11 and could be understood as the 
counterpart of topological charge in scalar vortex fields. The second term is related to the variation of 
SOP in space, which could be analyzed with the Poincaré sphere. To illustrate the physical interpreta-
tions and applicable scope of equation (7), in the following section, two cases are demonstrated, where 
vectorial vertices are generated by superposition of two scalar vortex fields and phased array antenna.

Superposition of two scalar vortex fields. For general vector beams, such as radially and azimuth-
ally polarized light, the field can be generated according to the following form31
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where θ is zenith angle in spherical coordinate (the Poincaré sphere), and the set l l{ }L R,  is topological 
charge of field components with left and right circular polarization respectively. For a fully polarized light 
(s 10 = ), there is a relation of πΩ = ( ± )( ) s s2R L 0 3 . Here Ω ( )R L  is the solid angle formed by the swept 
surface area of SOP revolving around the south (north) pole on the Poincaré sphere. Thus, equation (7) 
can be rewritten as
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With field expression in equation (8), azimuthal gradients of the Pancharatnam phase and the orien-
tation angle could be analytically expressed as (details are in supplementary information)
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Thus, substituting equations (10) and (11) into equation (9), the OAM charge is obtained as
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In the right side of equation  (12), the first term corresponds to topological Pancharatnam charge 
(lTPC), which is referenced to right or right circularly polarized field and just equals to ( )lR L  in this case. 
The second term is the SOP-related charge, which is the product of the azimuthal gradient of orientation 
angle of SOP and the related solid angle on the Poincaré sphere. For more clarity, some simulations have 
been carried on four fields generated with equation (8) and the results are shown in Fig. 1.

Figure  1(a–d) are the calculated results while the parameters are set as l l{ } {1 3}L R, = ,  with 30θ =  
and 120 and l l{ } { 2 1}L R, = − ,  with 60θ =  and 135. For each row panel, there are three parts in order: 
SOP trace on the Poincaré sphere marked by red line, SOP distribution in space, and a SOP snap in space. 
In Fig.  2, calculated results of OAM charges are shown as the green dots, which are calculated by equa-
tion (12) for the four cases shown in Fig. 1(a–d). For comparison, the OAM charges are also calculated by 
mode expansion method according to equation (8) and shown as solid lines in Fig. 2. For the cases shown 
in Fig. 1(a,b), the left circularly polarized fields (North Pole on the Poincaré sphere) is selected as the refer-
ence field and swept surface areas are also shown with yellow zone. While for Fig. 1(c,d), right circularly 
polarized field (South Pole on the Poincaré sphere) is selected as the reference. In Fig. 2, all the calculated 
results with our formula are in good agreement with those calculated by mode expansion method. From the 
results shown in Figs 1 and 2, a clear relation of OAM charge versus Pancharatnam phase, orientation angle 
of SOP, and the related solid angle on the Poincaré sphere is presented. Furthermore, with our formula, a 
geometrical description of OAM can be obtained by utilizing a basic Poincaré sphere, as shown in Fig. 1.

Phased array antenna. Recently, more and more attentions have been focused on the generation of 
OAM beams with phased array antenna (PAA) in RF, microwave, and lightwave region32–35. To model 
such process, some simulations are also carried on an annular PAA with antenna unit of linearly 
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polarized Gauss beam as schematically shown in Fig. 3(a). In this case, the optical communication wave-
length of 1550 nm is adopted. For each Gauss beam, the waist size is 8 μ m and polarization direction is 
azimuthal-dependent. The unit number is 16 and radius (R) of annular PAA, which is defined by the 
distance between the PAA center and each unit center as marked in Fig.  3(a), can be adjusted. These 
parameters ensure that the generated beam satisfies the paraxial approximation, thus Barnett’s method3 
can be utilized as a reference with the results calculated by equation (7). As demonstrated in Ref. 33, the 
AM charges of the generated beam can be tuned by varying the phase difference between adjacent units. 
In our simulation, the adjacent phase differences are uniform and the whole feeding phase of a circle 
(ΦF) is used to descript the setting phase of PAA. With such a structure, various vortex beams can be 
generated, such as radially or azimuthally polarized vector beams, L-line vortex beams36, and so on.

Figure 1. SOP distributions. Four vector beams with azimuthal variant state of polarization (SOP) 
generated with equation (8) are shown in four row panels, corresponding to (a–d). In each panel, different 
sketches of SOP trace on the Poincaré sphere marked by red line, SOP distribution in space and snap picture 
of SOP are demonstrated in order. Associated parameters in equation (8) for field generation are  
(a) l l{ } {1 3}L R, = , , 30θ = , (b) l l{ } {1 3}L R, = , , 120θ = , (c) l l{ } { 2 1}L R, = − , , 60θ = , and (d) 
l l{ } { 2 1}L R, = − , , 135θ = , respectively.

Figure 2. Charges of vector beams generated by superposition of scalar vortices. The calculated OAM 
charge for the vector beams generated with equation (8) of l l{ } {1 3}L R, = ,  and { 2 1}− ,  at different zenith 
angle in spherical coordinate (the Poincaré sphere). Green dots of OAM charges are calculated with our 
formula, which are corresponding to cases shown in Fig. 1(a–d), respectively. Solid lines are calculated by 
mode expansion method according to equation (8).



www.nature.com/scientificreports/

5Scientific RepoRts | 5:11982 | DOi: 10.1038/srep11982

Figure 3(b) shows a radially polarized vectorial beam, where SOP makes two revolutions at latitude on 
the Poincaré sphere for a circle in the space. Corresponding AM charges are calculated by both Barnett’s 
method and our formula, which are shown as lines and dots in Fig.  4(a), respectively. Two cases with 
different PAA radius of 10 and 30 μ m are also considered under the varied feeding phase, both methods 
give consistent OAM charge. Furthermore, Fig. 3(c,d) display another two types of vortex beam, where 
SOP makes one and half revolution at latitude on the Poincaré sphere for a circle in the space, respec-
tively. For a fixed PAA radius of 20 μ m, the OAM charges at different feeding phase are also calculated 
and presented in Fig. 4(b), and again, they are also in a very good agreement. These results indicate that 
the calculations for OAM charge with equation (7) can be applied on not only general vector beams but 

Figure 3. Vectorial vortices generated with PAA. (a) Schematic of the considered phased array antenna 
(PAA), which consists of 16 units. Each unit emits linearly polarized Gauss beam and the polarization 
direction and initial phase can be set. With PAA, varied vectorial vortex beams can be generated, (b) state 
of polarization (SOP) makes two revolutions at latitude on the Poincaré sphere (radially polarized vectorial 
beam), (c) SOP makes one revolution (L-line vortex), and (d) SOP makes half revolution.

Figure 4. Charges of vectorial vortices generated by PAA. Calculated angular momentum (AM) charges of 
(a) the vortex beam shown in Fig. 3(b) at different feeding phase of two different PAA radius of 10 and 
30 μ m, and (b) the vortex beam shown in Fig. 3(c,d) at different feeding phase of fixed PAA radius of 20 μ m. 
In the figures, lines are calculated by Barnett’s method and symbols are calculated by our formula for OAM 
and Stoke parameter of s3 for SAM. Right-side insets also show the corresponding SOP distribution at 
feeding phase of 2π.
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also complex vortex beams under the paraxial approximation, which can be explained by the principle 
of superposition with basis beams37.

Discussion
It should be noticed that, for most general vector beam shown in Fig.  3(b), the feeding phase ΦF are 
transferred to both OAM and SAM (see Fig. 4(a)), which is quite different to the scalar vortex beam. For 
a scalar vortex beam, the feeding phase ΦF would be fully transferred to OAM. However, for the vectorial 
vortices, even in the cases of πΦ = N2F  (N is any integer number), the number of N  is equals to the total 
angular momentum (TAM) charge of generated beam, while not the value of OAM charge (recently, a 
similar report was presented in Ref.  38). The reason is that part of the feeding phase is transferred to 
SAM in the central zone of vortex as shown with magenta circle in right-side inset of Fig.  4(a) and 
meanwhile the reduction of solid angle of swept area on the Poincaré sphere would suppress the trans-
formation of OAM from feeding phase. Fortunately, through a carefully designed PAA, the proportion 
of OAM charge can be varied by reducing power proportion of field around vortex center. For the same 
reason of partial OAM induced by azimuthal gradient of SOP-related phase, the detection of OAM 
charge will be different with that for scalar vortex by only detecting phase angle of wavefront. Thus, to 
detect OAM charge of vectorial vortices, a new method is required. Here, we can expect that such detec-
tion can be achieved by traditional measurement of Stokes parameters according to equation (7).

In equation (7), we introduce a reference field to calculate the OAM charge of vortices. In this work, only 
special reference fields, SOP of right or left circular polarization, were selected. However, it does not mean 
that a general reference field would induce an incorrect calculation result of OAM charge. To demonstrate 
it, a series of simulation were carried out to make a contrast, which is explained with more details in sup-
plementary information. Although the selection of reference field does not affect the result of OAM charge, 
reference field with right or left circular polarization is a normal choice in the measurement of Stokes param-
eters as well as this choice can also obtain a simple and elegant expression of OAM charge as equation (7).

Conclusion
In summary, for paraxial vectorial vortex beams propagating in free space, it is deduced that the OAM 
charge is not only related with the topological Pancharatnam charge but also the SOP-related charge 
induced by space-variant state of polarization (SOP). Based on such a connection, OAM also can be 
fully represented by the fundamental Poincaré sphere. And we can expect that the OAM charge can be 
detected by testing Stokes parameters, which is a standard test of polarization measurement for anten-
nas. Moreover, because of the explicit relation with SOP, we believe that this work would give some new 
insights for studies on vectorial vortices, spin-orbit interaction, photonic topological insulators, and so on.
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