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Abstract
Linear optical operations are fundamental and significant for both quantum mechanics and
classical technologies. We demonstrate a non-cascaded approach to perform arbitrary linear
operations for N-dimensional phase-coherent spatial modes using meticulously designed phase
gratings. As implemented on spatial light modulators (SLMs), the unitary transformation matrix
has been realized with dimensionalities ranging from 7 to 24 and the corresponding fidelities are
from 95.1% to 82.1%. For the non-unitary operators, a matrix is presented for the tomography of
a 4-level quantum system with a fidelity of 94.9%. Thus, the linear operator has been
successfully implemented with much higher dimensionality than that in previous reports. It
should be mentioned that our approach is not limited to SLMs and can be easily applied on other
devices. Thus, our proposal could provide another option to perform linear operations with a
simple, fixed, error-tolerant and scalable scheme.

Supplementary material for this article is available online
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1. Introduction

Linear operations on an N-dimensional vector are a powerful
tool both for quantum optics and for classical optical infor-
mation processing. In the quantum domain, several information
protocols have been demonstrated with linear optics. These
include the famous KLM scheme for universal quantum
computing [1], boson sampling [2–9], quantum gates and
Hadamard operations [8], quantum walks [10], quantum
transport [11], homomorphic encryption [12] and quantum
metrology [13]. For classical information, linear optics has
been applied for the programmable filters for microwave sig-
nals [14], photonic switch matrices for packet data networks
[15] and optical neural network for vowel recognition [16].

Typically, arbitrary linear operators can be achieved with
a programmable optical multiport interferometer introduced
by Reck et al [17]. In the Reck scheme, the N ×N

transformation matrix is achieved by a specific triangular
mesh of 2×2 beam splitters (or directional coupler) and
phase shifters. Recently, some modified designs of the Reck
scheme have been proposed to achieve more compact and
loss-tolerant multiport interferometer [18], non-unitary linear
operations [19] and an on-chip multiple interferometer has
been developed to unscramble beams [20]. However, both the
Reck scheme and variants of it require, in general, N (N –1)/2
beam splitters (or directional couplers) and a corresponding
number of phase shifters. Thus, as the dimensionality (N)
increased, the complexity in terms of system arrangement and
parameter control would grow significantly as O(N 2). Con-
sequently, realising a high-dimensional transformation matrix
is still very technologically challenging. To our knowledge
only a 6×6 unitary transformation matrix has been imple-
mented in the Reck scheme [8] while the achievable values
are 9×9 [9], 13×13 [6], 15×15 [21] and 26×26 [11]
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for constant and partially adjustable matrix elements,
respectively.

Recently, some linear transformation schemes have been
proposed within the orbital angular momentum (OAM) and
frequency domains. In the OAM domain, high-dimensional
transformations have not been achieved yet [22]. For trans-
formation in the frequency domain, multi-beam splitting and
recombining are employed. The dimensionality of such
approach relies on high speed phase modulator, which is still
technically challenging. Meanwhile, the cascaded structure is
still required to achieve both high dimensionality and near-
unitary efficiency [23]. Apart from the approaches imple-
mented with OAM modes or in frequency domain, generating
a chosen unitary transformation has also been demonstrated
using multiple spatial light modulators [24] and this technique
has been used as a multiplexer [25].

Here, we propose and demonstrate a simple, fixed, error-
tolerant and scalable scheme based on meticulously designed
phase gratings in order to perform arbitrary linear operations
for N-dimensional phase-coherent spatial modes. In contrast
with the Reck scheme, a cascaded multi-stage mesh is avoi-
ded and any linear operator can be decomposed into just two
processes, namely beam splitting and recombining. This
simplification is comparable to the ability to sort OAM modes
with just two specially designed elements [26] in place of the
multiple interferometers in an earlier device [27]. Our pro-
posal applies, at least in principle, irrespective of the number
of modes, N, that are introduced. In our experiment, imple-
mented on a spatial light modulator (SLM), the unitary
transformation matrix has been realized with dimensionalities
ranging from 7 to 24 with corresponding fidelities from
95.1% to 82.1%. Besides the unitary operations, non-unitary
operators can also be implemented, which makes it more
flexible for certain applications. As a concrete example, a
4×16 matrix is presented for the tomography of a 4-level
quantum system, performed with a fidelity of 94.9%. An
additional feature of our proposal is that the high-dimensional
states can be coded with any designed optical modes,
including the fundamental Gaussian modes, which is usually
quite desired in quantum applications to improve the collec-
tion efficiency. These results indicate that the linear operator
has been successfully implemented with much higher
dimensionality than in previous reports. Although our pro-
posal is not intrinsically lossless for an arbitrary linear
operator, we have provided an optimization process to map
the matrix elements into the phase grating patterns with the
lower bound of optimized transformation efficiency of 1/ N
while the achieved value is ∼0.8/ N in our experiments.

Finally, our proposal is an approach employing the spa-
tial degree of freedom so that there are some known advan-
tages. In particular, the identity of the photons could be
readily maintained and the manipulation is more manageable.
Thus, spatial modes are adopted in many quantum applica-
tions including information processing [28–31] and measur-
ing Wigner function of a quantum-chaotic system [32].
Furthermore, there is the potential to combine our approach
with that in the frequency domain since the spatial distribu-
tion and optical frequency are independent degrees of

freedom. Thus our proposal could provide a feasible approach
to perform linear operations with optical modes.

2. Results

2.1. N-dimensional optical states

As a general consideration, our task is to perform a linear
transformation on the N-dimensional vector of ∣añ to obtain an
M-dimensional vector of ∣bñ. In general, this entails realizing
a complex matrix T (M×N) such that ∣ ∣b añ = ñT . Here the
matrix T could be either unitary or non-unitary. Inspired by
structural light beams, the state vector can be represented with
optical phase-coherent spatial modes. To form an N-dimen-
sional vector of [ ]a a a a-, , , ,N N

T
1 2 1 , discrete beams are

employed, as shown in figure 1(a). The complex field ampl-
itude of each optical beam represents a corresponding coef-
ficient of αn. These beams have to be phase-coherent so that
complex operation can be performed. Furthermore, the
employed modes should share the same profile shape so as to
allow them to interfere. Here, discrete Gaussian beams are
employed to represent the state vectors:
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where r and rn denote the position vector and the central position
of the nth Gaussian beam spot, respectively, while u0 is the
normalization coefficient. To ensure the mode overlap small
enough, the distance between the different spots should be much
larger than the waist size of w0 ( ∣ ∣ -r rw i j0 ) and the detailed
discussion is given in the supplementary material (S6, available
online at stacks.iop.org/JOPT/21/104003/mmedia).

2.2. Linear operations with discrete phase-coherent spatial
modes

In the Reck scheme, any linear unitary operator can be
decomposed into a series of 2-dimensional beam splitting and
recombining operations, with the transformation coefficients
controlled by inserting phase shifters. As a consequence, N
(N−1)/2 units are required for full generality. In our scheme,
the splitting and recombining of the Gaussian beams are based
on a series of phase gratings implemented on two SLMs as
proposed in our previous work [33]. An SLM is an efficient
and programmable device, which is capable of generating
arbitrary beams and so is ideal for our task [34]. As shown in
figure 1(b), the input vector ∣ ( )a añ = å -r run

N
n n is incident

on the SLM1, on which a diffraction pattern is pre-settled to
mimic a series of blazed gratings so that each Gaussian beam
can be split into M beams with a selected ratio and then inci-
dent on SLM2. On SLM2, there is also a properly prepared
diffraction pattern so that the split modes are recombined with
selected weights. It should be noted that each of the reformed
beam spots on SLM2 is a superposition of several tilted beams
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diffracted from different spots on SLM1. Thus, there are some
undesired side lobes in addition to the desired recombined one.
To eliminate these side lobes and to keep the output beam
propagation direction as well as the original state, a 2f system
with a pinhole is employed for realignment and spatial filtering.
Following this, the output vector of ∣ ( )b bñ = å -r Rum

M
m m is

obtained, where Rm denotes the center position of the mth
Gaussian beam. In our approach, the most important issue is
how to map the complex matrix elements onto the phase
gratings on the SLM1 and SLM2. The modulation function on
nth spot of SLM1 and mth spot of SLM2 are settled as:

⎧⎨⎩
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where the coefficients of amn and bmn are the beam splitting and
recombining weight from nth spot on SLM1 to mth spot on
SLM2, respectively. The diffraction coefficients of kmn are
determined by the tilt angle. Additionally, some auxiliary
holograms are added in order to compensate for the divergence
during the propagation of Gaussian beams. A detailed
description can be found in sections S1–S3 in the supple-
mentary material. Here, only the key points are presented. For a
target transformation matrix of T (elements of tmn where
n=1, .., N and m=1, .., M), the coefficients of amn and bmn
should be determined according to the relation of amn·bmn=
tmn. In principle, an arbitrary coefficient pair of (amn, bmn) can
satisfy such relation to perform the linear operation. However,
different strategies for determining the coefficient pair result in
different efficiencies for implementing the matrix T . Due to the
passive property of SLMs and spatial filtering of pinhole, there
is some energy loss when processing the optical states. Thus,
the actually obtained matrix of ¢T may have an overall energy
loss compared to the ideal target matrix of T (denoted as

h¢ =T T ). To account for this, we introduce the parameter of
h = ¢T T , which characterizes the efficiency of implementa-
tion. To maximize this efficiency, the coefficient pair of (amn,
bmn) is obtained using Lagrange’s method. A detailed discus-
sion of this is provided in S1 in the supplementary material.
Our theoretical analysis indicates that the efficiency of imple-
mentation is about h » N1 for an N-dimensional unitary
matrix transformation. In our experiments, the achieved effi-
ciency is about h » N0.8 . A detailed discussion may be
found in the results section.

2.3. Optical setup

Figure 1(d) shows the experimental setup, in which there are
three parts for generating N-dimensional input vector, per-
forming the linear operations, and measuring the M-dimen-
sional output vector. The incident light beam is emitted from
a continuous wave laser with operation wavelength of
1550 nm and linewidth of 1 kHz (Rio Orion). It should be
mentioned that a narrow linewidth light source is required
since coherent states are employed in our proposed scheme.
The SLM0 is employed to generate the input vector by
modulating the incident Gaussian beam with the same beam
splitting holograms, while the SLM1, SLM2, pinhole and the
lens are utilized for the linear operation. As the linear
operation is based on the phase-coherent modes, the phase
terms of the output vector have to be measured. Thus, two
beam splitters (BS1 and BS2) are inserted before SLM0 and
CCD camera so that a typical Mach–Zehnder interferometer
(MZI) is implemented to measure the phase terms with the
method in our previous work [35]. The details can be found in
S4 of the supplementary material [35].

In our experiment, the employed SLMs (PLUTO-
TELCO-013) are reflection type and the light beam is incident
at ∼45°. Although the SLMs are considered as the trans-
mission type for conveniently introducing the principle of
operation is required, this does not affect the results sig-
nificantly although some modification of the real imple-
mentation is necessary. Figure 2(a) shows a typical hologram

Figure 1. The operation principle and the experimental setup of the
linear transformation on the high-dimensional optical states. (a) The
high-dimensional optical states is encoded with phase-coherent
spatial modes. (b) Beam splitting and recombining are achieved with
the phase gratings, which can be achieved by using SLMs. (c) 3D
view of full scheme of the state transformation, including two SLMs,
a pinhole and a lens. (d) Experimental setup of the linear
transformation on discrete phase-coherent spatial modes. BS: beam
splitter, SLM: spatial light modulator, DL: delay line.
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on SLM1 for 24-dimensional coherent states. As the light
beam is incident with ∼45° on the SLMs, the hologram spot
has to be distorted on purpose as an ellipsoid shape (shown in
figure 2(a)) to keep the output spot circular in shape. For each
hologram spot, the minor and major axes extend over about
70 pixels and 99 pixels, respectively, while the width of each
pixel is 8 micrometers. As an SLM can only partially mod-
ulate the incident light beam, an additional phase grating with
period of 4 pixels is introduced on each spot to separate
directly reflected light beam from the modulated beam. Fur-
thermore, the pixels out of the desired hologram spots should
behave as the ‘zero’ modulation. Normally, the phase should
be set as π and zero alternatively. However, in our experi-
ments, as the phase grating is introduced in each spot, a flat
phase could also serve as the ‘zero’ modulation. Figure 2(b)
shows the intensity of the output light spots recorded by a
CCD camera. As mentioned above, the phase term of each
spot is measured with the help of the MZI as well as CCD
camera while the measured phase term of one spot is shown
as the inset in figure 2(b). As shown in figure 2(b), there are
some fluctuations on the phase profile, which come from the
random variations of each arm in the MZI. Thus the phase
term of each spot is calculated by averaging the overall phase

profile to reduce the random fluctuations. Moreover, to deal
with the unavoidable misalignment between different optical
components, we have first measured the alignment error and
modified the target matrix elements (especially the phase
term). The detailed measurement and data processing
approaches are provided in the supplementary material.

As shown in figures 2(c), (d) and (f), up to a 24-
dimensional linear transformations has been achieved, with
the dimensionality limited by the resolution of SLMs. Some
typical experimental results of 24-dimensional transformation
are shown in figures 2(c), (d) and (f) and a detailed discussion
of these is provided in the supplementary material. For the 24-
dimensional case, the input states are settled as the column
vectors of the conjugate transpose matrix of the matrix
corresponding the unitary transformation, so that only the nth
spot is illumining in the output vector. In figures 2(d) and (f),
only the results for spot 2, 7 and 22 are shown while the full
results are provided in the supplementary material.

2.4. Transformation fidelity

For the linear operations, the most important parameter to
evaluate the performance is the transformation fidelity:

·
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where ¢tmn and tmn denote the matrix elements of obtained and
target transformation, respectively. It is this fidelity that
quantifies the precision of the transformation. To obtain the
matrix elements, each column vector of the identity matrix is
selected in turn as the input state in turn so that each column
of the matrix can be obtained. The details are provided in
the supplementary material. For simplicity, instead of
24-dimensional transformations, a 7-dimensional matrix is
implemented and measured to investigate the transformation
fidelity.

Firstly, the random unitary matrices are obtained as the
results of singular value decomposition of randomly gener-
ated matrices, in which each complex element inside have
random amplitude (0–1) and phase terms (0–2π) with uniform
probability distributions. A 7-dimensional unitary matrix and
the corresponding measurement results are shown in
figures 3(a) and (b), in which the horizontal coordinate is the
index of the column vector in the matrix. With equation (3),
the fidelity is calculated as high as 97.7%.

Although, employing the column vector of unit matrix as
input is a quite direct way to measure the matrix elements,
the obtained value is sometimes not perfectly accurate as the
beam recombination may not be involved fully. Thus, the
input vector should have multiple nonzero values. Especially,
if each element in the input vector has the same absolute
value, in which case the full beam recombination is involved.
To this end, we enact the transformation on each column
vector of the discrete Fourier transformation (DFT) matrix as

Figure 2. Typical holograms and measured high-dimensional optical
states. (a) The hologram on SLM1 for a 24-dimensional unitary
linear transformation. (b) The intensity of 24-dimensional optical
states of vector [ ]1, 1, 1, ,1 T is recorded with CCD camera while
the right corner shows the measured phase of one light spot in the
state. (c) The relation between the state vector and the light spots.
There are 24 light spots for each vector labeled as spots 1–24.
Additionally, there is an extra light spot marked as spot 0, which is
introduced for the phase measurement. (d)–(f) Typical output after
24-dimensional unitary transformation. The input states are the
column vectors of the conjugate transpose matrix of the matrix
corresponding the unitary transformation. Thus, the output states are
the column vectors of the identity matrix, corresponding to the
optical states with one spot is illumining. In (c)–(f), for clearer view,
the brightness is increased by 20% compared to the raw data
obtained by CCD camera.
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the input vectors. The target/difference output vectors for
these are shown in figures 3(c) and (d).

Mathematically, the inner product between the outputs
scanned by column vectors in an arbitrary unitary matrix
would be the same as the one scanned by column vectors in
unit matrix, and the deduction can be found in the supple-
mentary material. Thus, the inner product between the outputs
scanned with vectors in DFT matrix could also present the
transformation fidelity and the value is calculated as high as
95.1%, which is only a little degraded to that obtained from
the directly measuring the matrix elements (97.7%). This
result indicates that the beam combining is quite accurate and
our proposed approach achieves a high fidelity. Randomly
generated unitary matrices with higher dimensionalities of 16,
19 and 24 have been implemented and the measured values of
the corresponding transformation fidelities are 85.2%, 83.9%,
and 82.1%, respectively. It should be mentioned that, for such
high-dimensional transformations, a projection method is
adopted to measure the fidelities, while the detailed method

and data are provided in the supplementary material (S5
and S6).

It is our ambition to achieve the high-fidelity linear
operation without the need for a multi-stage mesh. Thus,
besides experimental demonstration, some simulations have
been carried out to compare our proposal and the Reck
scheme. The results are summarized in figures 4(a)–(c). For
most cases, the fidelity could be ∼99%. The worst case is
2-dimension and the reason is that phase gratings behaves
badly in small amount of fan-out, especially in this case.
Thus, the fidelity actually increases along with the dimen-
sionality at first and then drops slowly due to the increased
complexity.

An obvious advantage of our proposal is the non-cas-
caded structure so that there are no accumulated implement-
ing errors. In the Reck scheme, the fidelity of transformation
would drop due to the inevitable imperfections associated
with including large numbers of optical components, for
example the losses in the beam splitters and the phase drift of
the phase modulators. To deal with beam splitters losses, a
modified Reck scheme [18] was proposed to achieve loss-
tolerance by balancing the light path between different ports
and our scheme has the same advantage. However, the
modified Reck scheme still suffers from the phase drift, which
could be introduced by the calibration error or the ambient
fluctuations of the phase modulators, while our scheme has
the advantage of drift-tolerance. Obviously, the impact of
phase drift on Reck and our scheme is different. For com-
parisons, we assume that there is the same phase drift in Reck
and our scheme. In the Reck scheme, the phase drift is added
on each phase modulator, while in our scheme, it is added in

Figure 3. The elements of output vector after a randomly generated
7-dimensional unitary matrix acting on each column vector of the
unit matrix (a) and (b) and the DFT matrix (c) and (d). The upper and
bottom figures show the target elements and differences between the
measured elements, respectively. (a), (c) The amplitude term.
(b), (d) The phase term.

Figure 4. The comparison between simulations and experiments
in terms of fidelities and efficiencies of the linear transformations.
(a) The simulated transformation fidelity for 50 random unitary
operations with dimensionality of 1–25. (b) The simulated fidelity
versus random phase shift ranges with 20-dimensional transforma-
tion. (c) The simulated fidelity versus the dimensionality of
transformation with random phase shift range of π/10. (d) The
simulated average efficiency for all unitary matrices versus matrix
dimensionality is denoted as the black dot while the value of N1
is also plotted as red line for comparison while the experimental
values for 7−, 16−, 19− and 24-dimensional transformations are
also denoted as green star.
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each diffraction beam. Within the drift range, the phase value
is considered as uniform probability distribution. Figures 4(b)
and (c) are the calculated results of the fidelity versus phase
drifts.

A further advantage of our proposal is that a non-unitary
matrix and even a non-square matrix can readily be imple-
mented. For instance, quantum tomography can be achieved
by linear transformation with a N×N2 matrix, which can be
readily implemented with our scheme. According to [36], the
tomography of a 4-level quantum system can be achieved
with a 4×16 matrix in equation (4).

Such a matrix has been implemented with fidelity of
95.3% measured by the direct elements scanning approach.
This matrix could be treated as a combining of four square
matrices with dimensionality of 4. Thus, the fidelity could be
obtained by inputting the column vectors of 4-dimensional
DFT matrix four times and the value is as high as 94.9%. This
indicates that our proposal also works well for non-unitary
operators.

2.5. Transformation efficiency

In addition to the transformation fidelity, the transformation
efficiency is an important parameter with which to evaluate
the performance of linear operations. In the above section,
about the transformation fidelity, the matrix elements as well
as the output vectors are normalized so that the transformation
efficiency has not been discussed. As mentioned, our scheme
for arbitrary linear operator is not lossless due to the light
beam filtering. The efficiency depends on the strategy to
determine the splitting and recombining coefficients, which is
discussed in the supplementary material. The main point is
the worst case will be touched for a non-sparse matrix,
especially for the DFT matrix with value of h » N1 for N-
dimensional transformation. For other types of linear opera-
tors, the transformation efficiency would be higher than this
value. In particular, the Reck scheme can have a much higher
efficiency. To verify the theoretical prediction, we have car-
ried out some simulations with 50 random unitary-matrices
for dimensionality of 1–25 and figure 4(d) summarizes the
results. The transformation efficiency is obtained by calcu-
lating the energy ratio between the output of target matrix and
identity matrix while the error bars denotes the standard
deviation of simulated efficiencies. It can be seen that the
simulated efficiency is a little bit lower than the ideal pre-
diction of N1 . The reason for this is that there is diffraction
loss due beam splitting with the phase grating, which is not
included in our theoretical analysis. To estimate the impact of
diffraction loss, the ratio between the transmission efficiency
obtained and the implementing efficiency from the resolve

approach is calculated and the value is about 0.8 for trans-
formation dimensionality of 7–25. Thus, the transformation
efficiency of our proposal could be estimated as h » N0.8
according to the simulations and experimental results.

3. Discussion

We have demonstrated a non-cascaded approach to perform
arbitrary linear operations for N-dimensional phase-coherent
spatial modes. With meticulously designed phase gratings,
not only unitary but also non-unitary operators can be
implemented. The main features of our scheme are high-
fidelity and error tolerance. According to the experiments
implemented on SLMs, the transmission fidelity can be as
high as 95.1% for randomly generated 7-dimensional unitary
matrix while the values are 82.1% and 94.9% for 24-dimen-
sional unitary matrix and a 4×16 matrix (for the tomo-
graphy of a 4-level quantum system), respectively. Moreover,

although the phase gratings are implemented on a SLM in this
work, our approach is not limited to SLMs and can be easily
applied on other devices. Thus we believe that our proposal
provides another option to perform linear operation with
optical phase-coherent spatial modes.

It should be noted, however, that due to the intrinsic loss
of beam splitting and filtering, our proposal is not lossless for
an arbitrary operator. Thus, our approach would suffer from
the efficiency for the cases that the insertion loss is critical,
e.g. some quantum photonic applications. Theoretically, the
lower bound of optimized transformation efficiency is
~ N1 and the achieved value is ~ N0.8 in experiments.
In practice, the efficiency depends on how to map the matrix
elements into the phase grating patterns and there is still some
space for more improvement.

Acknowledgments

This work was supported by the National Key Research and
Development Program of China (2017YFA0303700), the
National Natural Science Foundation of China (Grant Nos.
61875101 and 61621064), the Royal Society Research Pro-
fessorships (RP150122), Beijing Innovation Center for Future
Chip and Beijing Academy of Quantum Information Science.
The authors would like to thank Dr Yu Wang for valuable
discussions and helpful comments and Professor David Miller
for a helpful correspondence.

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
( )=

- -

- - -

- - -

p

p p p p p

p p p p p p p

p p p p p p p

T

e

e e e e e

e e e e e e e

e e e e e e e

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

1 1 1 0 0 0 0 1 1 1 1

1 1 1 0 0 0 0 1 1

1 1 1 1 1 0 0 0 0

. 4

i

i i i i i

i i i i i i i

i i i i i i i

T2
3

2
3

2
3

2
3

2
3

2
3

2
3

2
3

2
3

2
3

2
3

2
3

2
3

2
3

2
3

2
3

2
3

2
3

2
3

2
3

6

J. Opt. 21 (2019) 104003 P Zhao et al



ORCID iDs

Xue Feng https://orcid.org/0000-0002-9057-1549
Stephen M Barnett https://orcid.org/0000-0003-
0733-4524

References

[1] Knill E, Laflamme R and Milburn G J 2001 A scheme for
efficient quantum computation with linear optics Nature 409
46–52

[2] Tillmann M, Dakić B, Heilmann R, Nolte S, Szameit A and
Walther P 2013 Experimental boson sampling Nat. Photon.
7 540–4

[3] Crespi A et al 2013 Integrated multimode interferometers with
arbitrary designs for photonic boson sampling Nat. Photon.
7 545–9

[4] Broome M A et al 2013 Photonic boson sampling in a tunable
circuit Science 339 794–8

[5] Spring J B et al 2013 Boson sampling on a photonic chip
Science 339 798–801

[6] Spagnolo N et al 2014 Experimental validation of photonic
boson sampling Nat. Photon. 8 615–20

[7] Carolan J et al 2014 On the experimental verification of
quantum complexity in linear optics Nat. Photon. 8 621–6

[8] Carolan J et al 2015 Universal linear optics Science 349 711–6
[9] Wang H et al 2017 High-efficiency multiphoton boson

sampling Nat. Photon. 11 361
[10] Rohde P P, Schreiber A, Štefaňák M, Jex I and Silberhorn C

2011 Multi-walker discrete time quantum walks on arbitrary
graphs, their properties and their photonic implementation
New J. Phys. 13 013001

[11] Harris N C et al 2017 Quantum transport simulations in a
programmable nanophotonic processor Nat. Photon. 11
447–52

[12] Rohde P P, Fitzsimons J F and Gilchrist A 2012 Quantum
walks with encrypted data Phys. Rev. Lett. 109 150501

[13] Motes K R, Olson J P, Rabeaux E J, Dowling J P,
Olson S J and Rohde P P 2015 Linear optical quantum
metrology with single photons: exploiting spontaneously
generated entanglement to beat the shot-noise limit Phys.
Rev. Lett. 114 170802

[14] Zhuang L, Roeloffzen C G H, Hoekman M, Boller K-J and
Lowery A J 2015 Programmable photonic signal processor
chip for radiofrequency applications Optica 2 854

[15] Stabile R, Albores-Mejia A, Rohit A and Williams K A 2016
Integrated optical switch matrices for packet data networks
Microsyst. Nanoeng. 2 15042

[16] Shen Y et al 2017 Deep learning with coherent nanophotonic
circuits Nat. Photon. 11 441

[17] Reck M, Zeilinger A, Bernstein H J and Bertani P 1994
Experimental realization of any discrete unitary operator
Phys. Rev. Lett. 73 58–61

[18] Clements W R, Humphreys P C, Metcalf B J,
Kolthammer W S and Walsmley I A 2016 Optimal design
for universal multiport interferometers Optica 3 1460

[19] Miller D A B 2013 Self-configuring universal linear optical
component Photon. Res. 1 1

[20] Annoni A et al 2017 Unscrambling lightautomatically undoing
strong mixing between modes Light: Sci. Appl. 6 e17110

[21] Wang J et al 2018 Multidimensional quantum entanglement
with large-scale integrated optics Science 360 285–91

[22] Schlederer F, Krenn M, Fickler R, Malik M and Zeilinger A
2016 Cyclic transformation of orbital angular momentum
modes New J. Phys. 18 043019

[23] Lukens J M and Lougovski P 2017 Frequency-encoded
photonic qubits for scalable quantum information processing
Optica 4 8

[24] Morizur J-F et al 2010 Programmable unitary spatial mode
manipulation J. Opt. Soc. Am. A 27 2524–31

[25] Labroille G, Denolle B, Jian P, Genevaux P, Treps N and
Morizur J-F 2014 Efficient and mode selective spatial mode
multiplexer based on multi-plane light conversion Opt.
Express 22 15599

[26] Berkhout G C G, Lavery M P J, Courtial J,
Beijersbergen M W and Padgett M J 2010 Efficient sorting
of orbital angular momentum states of light Phys. Rev. Lett.
105 153601

[27] Leach J, Padgett M J, Barnett S M, Franke-Arnold S and
Courtial J 2002 Measuring the orbital angular momentum of
a single photon Phys. Rev. Lett. 88 257901

[28] Neves L, Lima G, Aguirre Gómez J G, Monken C H,
Saavedra C and Pádua S 2005 Generation of entangled states
of qudits using twin photons Phys. Rev. Lett. 94 100501

[29] Khoury A Z, Oxman L E, Marques B, Matoso A and Pádua S
2013 Fractional topological phase on spatially encoded
photonic qudits Phys. Rev. A 87 042113

[30] Walborn S P, Lemelle D S, Almeida M P and
Souto Ribeiro P H 2006 Quantum key distribution with
higher-order alphabets using spatially encoded qudits Phys.
Rev. Lett. 96 090501

[31] Matoso A A, Ribeiro R A, Oxman L E, Khoury A Z and
Pádua S 2019 Fractional topological phase measurement
with a hyperentangled photon source Sci. Rep. 9 577

[32] Lemos G B, Gomes R M, Walborn S P, Souto Ribeiro P H and
Toscano F 2012 Experimental observation of quantum chaos
in a beam of light Nat. Commun. 3 1211

[33] Wang Y, Potoček V, Barnett S M and Feng X 2017
Programmable holographic technique for implementing
unitary and nonunitary transformations Phys. Rev. A 95
033827

[34] Radwell N, Offer R F, Selyem A and Franke-Arnold S 2017
Optimisation of arbitrary light beam generation with spatial
light modulators J. Opt. 19 095605

[35] Zhao P et al 2017 Measuring the complex orbital angular
momentum spectrum of light with a mode-matching method
Opt. Lett. 42 1080

[36] Kues M et al 2017 On-chip generation of high-dimensional
entangled quantum states and their coherent control Nature
546 622–6

7

J. Opt. 21 (2019) 104003 P Zhao et al

https://orcid.org/0000-0002-9057-1549
https://orcid.org/0000-0002-9057-1549
https://orcid.org/0000-0002-9057-1549
https://orcid.org/0000-0002-9057-1549
https://orcid.org/0000-0003-0733-4524
https://orcid.org/0000-0003-0733-4524
https://orcid.org/0000-0003-0733-4524
https://orcid.org/0000-0003-0733-4524
https://orcid.org/0000-0003-0733-4524
https://doi.org/10.1038/35051009
https://doi.org/10.1038/35051009
https://doi.org/10.1038/35051009
https://doi.org/10.1038/35051009
https://doi.org/10.1038/nphoton.2013.102
https://doi.org/10.1038/nphoton.2013.102
https://doi.org/10.1038/nphoton.2013.102
https://doi.org/10.1038/nphoton.2013.112
https://doi.org/10.1038/nphoton.2013.112
https://doi.org/10.1038/nphoton.2013.112
https://doi.org/10.1126/science.1231440
https://doi.org/10.1126/science.1231440
https://doi.org/10.1126/science.1231440
https://doi.org/10.1126/science.1231692
https://doi.org/10.1126/science.1231692
https://doi.org/10.1126/science.1231692
https://doi.org/10.1038/nphoton.2014.135
https://doi.org/10.1038/nphoton.2014.135
https://doi.org/10.1038/nphoton.2014.135
https://doi.org/10.1038/nphoton.2014.152
https://doi.org/10.1038/nphoton.2014.152
https://doi.org/10.1038/nphoton.2014.152
https://doi.org/10.1126/science.aab3642
https://doi.org/10.1126/science.aab3642
https://doi.org/10.1126/science.aab3642
https://doi.org/10.1038/nphoton.2017.63
https://doi.org/10.1088/1367-2630/13/1/013001
https://doi.org/10.1038/nphoton.2017.95
https://doi.org/10.1038/nphoton.2017.95
https://doi.org/10.1038/nphoton.2017.95
https://doi.org/10.1038/nphoton.2017.95
https://doi.org/10.1103/PhysRevLett.109.150501
https://doi.org/10.1103/PhysRevLett.114.170802
https://doi.org/10.1364/OPTICA.2.000854
https://doi.org/10.1038/micronano.2015.42
https://doi.org/10.1038/nphoton.2017.93
https://doi.org/10.1103/PhysRevLett.73.58
https://doi.org/10.1103/PhysRevLett.73.58
https://doi.org/10.1103/PhysRevLett.73.58
https://doi.org/10.1364/OPTICA.3.001460
https://doi.org/10.1364/PRJ.1.000001
https://doi.org/10.1038/lsa.2017.110
https://doi.org/10.1126/science.aar7053
https://doi.org/10.1126/science.aar7053
https://doi.org/10.1126/science.aar7053
https://doi.org/10.1088/1367-2630/18/4/043019
https://doi.org/10.1364/OPTICA.4.000008
https://doi.org/10.1364/JOSAA.27.002524
https://doi.org/10.1364/JOSAA.27.002524
https://doi.org/10.1364/JOSAA.27.002524
https://doi.org/10.1364/OE.22.015599
https://doi.org/10.1103/PhysRevLett.105.153601
https://doi.org/10.1103/PhysRevLett.88.257901
https://doi.org/10.1103/PhysRevLett.94.100501
https://doi.org/10.1103/PhysRevA.87.042113
https://doi.org/10.1103/PhysRevLett.96.090501
https://doi.org/10.1038/ncomms2214
https://doi.org/10.1103/PhysRevA.95.033827
https://doi.org/10.1103/PhysRevA.95.033827
https://doi.org/10.1088/2040-8986/aa7f50
https://doi.org/10.1364/OL.42.001080
https://doi.org/10.1038/nature22986
https://doi.org/10.1038/nature22986
https://doi.org/10.1038/nature22986

	1. Introduction
	2. Results
	2.1. N-dimensional optical states
	2.2. Linear operations with discrete phase-coherent spatial modes
	2.3. Optical setup
	2.4. Transformation fidelity
	2.5. Transformation efficiency

	3. Discussion
	Acknowledgments
	References



