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To manipulate orbital angular momentum (OAM) carried by light beams, there is a great interest in designing
various optical elements from the deep-ultraviolet to the microwave. Normally, the OAM variation introduced
by optical elements can be attributed to two terms, namely, the dynamic and geometric phases. Up till now, the
dynamic contribution induced by optical elements has been clearly recognized. However, the contribution of
geometric phase still seems obscure, especially considering the vector vortex beams. In this work, an analytical
formula is derived to fully describe the OAM variation introduced by the nonabsorbing optical elements, which
perform space-variant polarization-state manipulations. It is found that the geometric contribution can be further
divided into two parts: one is directly related to optical elements and the other one explicitly relies solely on the
vortices before and after the transformations. Based on this result, the same OAM variation can be achieved with
different combinations of the dynamic and/or geometric contributions. With numerical simulations, it is shown
that transformation of the optical vortices can be fully and flexibly designed with a family of optical elements.
We believe that these results are helpful to understand the effect of optical elements and offer a new perspective
to design the optical elements for manipulating the OAM carried by light beams.

DOI: 10.1103/PhysRevA.98.043845

I. INTRODUCTION

Light can carry both spin and orbital angular momentum
(SAM and OAM), which are corresponding to the polarization
and spatial degrees of freedom, respectively [1–3]. Under the
paraxial approximation, the SAM and OAM are separable
within isotropic homogeneous media [4]. The SAM per pho-
ton has a value of ±h̄ (the reduced Planck’s constant) cor-
responding to left-/right-handed circular polarization, while
the OAM would be more intriguing even under paraxial
approximation. For a scalar vortex beam, the OAM would
be lh̄ per photon for the optical field with a spiral wavefront
of exp(ilφ), where l can be any integer [5]. However, for
vector vortex beams, it would be more complicated since
the space-variant state of polarization (SOP) would attribute
to the OAM charge [6,7]. To address it, several approaches
have been proposed to extract the geometric contribution
through the high-order Poincaré spheres [8,9] or introducing
the topological Pancharatnam charge [10]. However, when the
light beam is transformed, there are no explicit formulas to
describe the corresponding variation of OAM charge due to
the geometric contribution. Such an explicit formula would be
significant while analyzing the OAM evolution in an optical
system and tailoring the OAM carried by vortex beams, since
the spin-orbit interactions (SOIs) are inevitable.

The SOI is a general basic phenomenon in manipulations
of light beams and photons, which has been observed in
light propagating [11,12], scattering [13], focusing [14], etc.
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The SOIs have evoked some interesting investigations of
physical phenomena such as the spin-Hall effect [15–17],
extraordinary momentum states [18] and even extended to
cavity-quantum electrodynamics (CQEDs) [19]. In the new
reality of nano-optics, SOI is essential in both the physical
conception and device design and should be also taken into ac-
count for nano-optical systems. Recently, several nano-optics
platforms have been employed to replicate the functionality of
common optical elements such as polarizers, wave retarders,
etc., which have shown promising abilities to manipulate both
polarization and phase distributions of optical beams [20]. In
particular, SOI has emerged as a powerful mean to tailor the
OAM carried by scalar vortex beams, which can be achieved
by optical elements to perform space-variant polarization-
state manipulations (e.g., spiral phase plates [21], q-plates
[22,23], J-plates [24]). In these transformations, the desired
spiral wavefronts of light beams are introduced by steering
dynamic phase and/or geometric phase. However, the SOIs
would be much more complicated while considering vector
vortex beams passing through optical elements, where the
geometric phase has to be seriously considered to evaluate the
OAM of light beams [25,26]. Furthermore, more interesting
phenomena and flexible manipulations of optical vortices
can be achieved with SOIs in inhomogeneous or anisotropic
media. The manipulation of SOIs can release the full potential
of information processing through an effective utilization of
both SAM and OAM. Thus the generation, measurement, and
control of optical vortices via SOIs have attracted a consid-
erable amount of attentions recently. Definitely, two cruxes,
namely OAM variation and geometric phase, are inevitable
in the SOIs of optical vortices. Thus, there are two questions
that should be addressed. First, whether the OAM variation
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introduced by optical element is distinguishable in terms of
dynamic and geometric phases for arbitrary vortex beams?
And second, whether there are various designs of optical
elements to tailor OAM as steering SAM? These issues are
quite appealing for both the theoretical understanding and
practical application.

In this work, we have tackled both issues. An explicit
formula is deduced to describe the OAM variation introduced
by the nonabsorbing optical elements, which perform space-
variant polarization-state manipulations. It is found that the
geometric contribution can be further divided into two parts:
one is directly related to optical elements and the other one ex-
plicitly relies solely on the optical vortices before and after the
transformations. Specifically, an intuitive picture is presented
to obtain deeper insight into how the dynamic and geometric
phases are involved. As a concrete example, we present the
design rule for transformations from one scalar vortex to
another to show the flexibility for the same OAM variation.
Furthermore, the designs of transforming vector vortex are
also shown. At the end, the features of previously reported
optical elements would be discussed under our theoretical
framework.

II. THEORETICAL PRINCIPLE

A. OAM of an optical vortex beam

Under the paraxial approximation, an electric field of a
fully polarized vector vortex beam propagating along z direc-
tion with the angular frequency ω can be written as [27]

E(x, y) = iω

[
αx̂ + βŷ + i

k

(
∂α

∂x
+ ∂β

∂y

)
ẑ
]
eikz, (1)

where α(β ) represents the complex amplitude of x(y) com-
ponent of electric field, as a function of (x, y) (omitted
for simplicity). Then the SOP of such a beam can be
described by a 2 × 1 Jones vector |a〉 = (ax, ay )T, where
ax (ay ) = α(β )/

√
IE represents the normalized complex am-

plitude and IE = |α|2 + |β|2 is the electric intensity of light.
The corresponding Stokes vector S =(S1, S2, S3)T is defined
by Sj = 〈a|σ j |a〉(j = 1, 2, 3), where σ j are the Pauli ma-
trices and S0 = 〈a|σ 0|a〉, where σ 0 equals 2 × 2 identity
matrix [28]. Thus, S0 = 1 presents fully polarized light and
S3 = ±1 presents left/right circularly polarized field |e±〉 =
(1/

√
2)(1,±i)T. By mapping S directly in three-dimensional

Cartesian coordinates, the Poincaré sphere can be constructed
and the corresponding azimuth (ψS) and ellipticity (χS) angles
of SOP can be resolved by tan(2ψS) = S2/S1 and sin(2χS) =
S3/S0 [29].

With the aforementioned notations, the average OAM
charge for a fully polarized paraxial vector vortex beam can
be calculated by OAM density jo

z as [3,30]

l̄ =
∫∫

jo
zrdrdφ

ωε0
∫∫

IES0rdrdφ
. (2)

It should be noticed that the average OAM charge depends
on not only the distribution of SOP but also the intensity
distribution (IE) of beams. Thus, Eq. (2) is also applicable
to characterize the nonvortex (symmetry) OAM of beams
without the wavefront singularities [31]. Next, similar to our

previous work [10], the OAM density can be expressed by
introducing the Pancharatnam connection between two differ-
ent SOPs [32]. Here, circularly polarized fields are adopted
as reference. Then, the phase difference for any field |a〉 =
(ax, ay )T can be written as ψP± = arg (〈e±|a〉). According to
Ref. [10], the OAM density can be obtained by

jo
z

ωε0IE
= 1

2

[
(1 + S3)

∂ψP+
∂φ

+ (1 − S3)
∂ψP−
∂φ

]
. (3)

The detailed deduction of Eqs. (2) and (3) can be found in
Appendix A.

In Eq. (3), the derivative of ψP± is known as the topo-
logical Pancharatnam charge [7,10]. With Eqs. (2) and (3),
the average OAM charge carried by the light beam can
be fully expressed with the SAM (S3) and the topological
Pancharatnam charge (∂ψP±/∂φ), which can depict the OAM
states on a single Poincaré sphere as Refs. [10,33]. Thus, the
corresponding geometric phase for any transformations can be
conveniently identified on the same Poincaré spheres. Such a
representation can succinctly and elegantly describe the OAM
of a light beam, where the contribution from the space-variant
SOP of vector vortex has been naturally embedded. Moreover,
the OAM charge can be identified with standard measurement
of Stokes parameters and interferometry. As shown in the
following part, our approach could be conveniently employed
to design optical elements for manipulating the OAM charge
and investigate the OAM evolution of light beam propagating
in an optical system.

B. OAM variation induced by nonabsorbing optical elements

Here, we consider a scenario that a light passes through a
nonabsorbing optical element. The SOPs of input and output
fields are denoted as |a〉 = (ax, ay )T and |b〉 = (bx, by )T,
respectively. And the optical element is characterized by a
unitary Jones matrix J, i.e., J† = J−1. Thus, the light field
transformation can be described as |b〉 = J|a〉 (see Fig. 1).
Mathematically, the eigenvalues and eigenstates of J are μ1(2)

and |q1(2)〉, respectively. Then the corresponding Stokes vec-
tors for eigenstates can be calculated as SJ = Sq1 = −Sq2 =
(SJ

1, S
J
2, S

J
3)T, where SJ

j = 〈q1|σ j |q1〉. With these notations,
the variation of OAM density can be deduced according to
Eq. (3). For transforming state |a〉 to state |b〉, beyond SAM
variation from Sa

3 to Sb
3 , there is also a variation from ψa

P±
to ψb

P±, where the superscript a(b) refers to the parameters
related to state |a〉(|b〉). According to Refs. [28,34], the phase
difference ψa→b

P± = ψb
P± − ψa

P± can be rewritten as

ψa→b
P± = ψD − �C

abe±

2
+ �J

abb†a†

4
, (4)

where ψD = arg(μ1μ2)/2 presents the dynamic phase as
the light beam propagating through the optical element and
�C

abe±/2 is the geometric phase introduced by varied SOP
between the output and input fields, which corresponds to
parallel transport of the state around a closed loop (|a〉 →
|b〉 → |e±〉 → |a〉) on the Poincaré sphere [see Fig. 2(a)].
While �J

abb†a† is a spherical quadrangle corresponding to the

closed trajectory |a〉 → |b〉 → |b†J〉 → |a†
J 〉 → |a〉, as blue

area shown in Fig. 2(b) (also see Fig. 6), where |a†
J 〉(|b†J〉)
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FIG. 1. Manipulating both SAM and OAM. For the same trans-
formation from |a〉 to |b〉, different linear operations (i.e., with
different Jones matrices Ji , where i = 1, 2) can induce distinct
OAM charge since there are different combinations of dynamic
phases ψDi

and geometric phases �Gi
/4 (i = 1, 2). The magnitude

of �Gi
depends on the eigen-polarization |q1i

〉 and birefringent phase
difference ψBi

of Ji . The inset shows that one linear operation can
transform a pair of orthogonal SOP scalar vortices |a±〉 into another
pair of SOP scalar vortices |b±〉 with different OAM variations at the
same time.

holds the Stokes vector Sa
†
J (b†J ) = Sa(b) − 2(Sa(b) · SJ )SJ. It can

be found that the term �J
abb†a†/4 is the geometric phase ex-

plicitly related with the optical element J. It should be noticed
that although both �C

abe±/2 and �J
abb†a†/4 are related to the

geometric phases, they would affect the final OAM density
with different manners. To clearly describe the contribution
of optical element and the impact of varied SOP between
input and output fields, the variation of OAM density can be

(b)(a)

FIG. 2. Solid angle associated with geometric phase in the trans-
formation. (a) Geodesic triangle �C

abe+ (reddish) and �C
abe− (buff) on

the Poincaré sphere. (b) Spherical quadrangle �J
abb†a† (blue) on the

Poincaré sphere, which is a portion of lune of dihedral angle defined
by states |a〉, |b〉 and |q1(2)〉. The state |a†

J 〉(|b†
J 〉) is a reflection of

state |a〉(|b〉) referring to mirror plane of a great circle, which is
perpendicular to the axis joining the states |q1〉 and |q2〉. Similarly,
spherical quadrangle �C

abb†a† (green) is a portion of lune of dihedral

angle defined by states |a〉, |b〉 and |e±〉. The state |a†
C〉(|b†

C〉) is a
reflection of state |a〉(|b〉) referring to mirror plane of the equator.

deduced with Eq. (4) as follows:

�jo
z

ωε0IE
= ∂ψD

∂φ
+ ∂

∂φ

(
�J

abb†a†

4

)

+
[
Sa

3
∂ψa

S

∂φ
− Sb

3
∂ψb

S

∂φ
− ∂

∂φ

(
�C

abb†a†

4

)]
, (5)

where �C
abb†a† is a spherical quadrangle defined by states |a〉,

|b〉, |b†C〉 and |a†
C〉 as green area shown in Fig. 2(b), where

|a†
C〉(|b†C〉) holds the Stokes vector Sa

†
C(b†C ) = Sa(b) − 2(Sa(b) ·

Se+ )Se+ . It is easy to find �C
abb†a† = �C

abe+ + �C
abe− (see

Appendix B for details). According to Eq. (5), the OAM
variation can be attributed to three terms. The first term
(Cd = ∂ψD

∂φ
) is dynamic contribution and presents the OAM

variation induced by the dynamic phase delay, which only
depends on ψD of the optical element (J), regardless of the
SOP of input beam. The rest two terms present the geometric
contributions (Cg) that rely on the optical elements as well
as the SOP of light beams. Specifically, the second term
[CJ

g = 1
4

∂
∂φ

(�J
abb†a† )] is related to eigen-polarization SJ (i.e.

|q1〉) and birefringent phase difference ψB [equals arg(μ∗
1μ2)]

of the adopted transformation matrix J [see corresponding
spherical quadrangle �Gi

in Fig. 1 or �J
abb†a† in Fig. 2(b)].

The third (rest) term (CV
g ) explicitly depends on the input and

output fields themselves and presents the geometric contribu-
tion stemming from the different SOP distributions of input
and output vortices. Namely, CV

g can be fully determined by
Sa and Sb [for �C

abb†a† , see Fig. 2(b)]. Thus, the geometric
contribution of CV

g would be determined once the input and
target output vortex beams are given. However, there are
still various combinations of dynamic (Cd) and geometric
(CJ

g) contributions to achieve the same OAM variation. Thus,
Eq. (5) indicates that it would be greatly flexible to design
the optical element for vortex beam transformations. It should
be mentioned that this has not been fully perceived and
explored at present. To demonstrate the mentioned above,
some simulations have been carried out for both the scalar and
vector vortex beams.

III. TRANSFORMATIONS ON SCALAR VORTICES

First, the point-to-point (P2P) transformation is
demonstrated on the Poincaré sphere for a scalar vortex
beam with the same OAM variation but different designs,
as sketched in Fig. 1. According to Eq. (5), it can be found
that CV

g = 0 for P2P transformation of scalar vortex. Thus,
there are two contributions for the OAM variation. The first
one is the dynamic contribution (Cd), which is determined
by ψD of optical elements. The second term is geometric
contribution (CJ

g), which stems from geometric phase �G/4
depending on the |q1〉 and ψB. As a scalar vortex, the input
light beam can be fully described by SOP of {2ψS, 2χS}
and OAM charge of l. It should be noted that the SOPs of
the scalar vortices are space-invariant, so {2ψS, 2χS} are
(x, y)-independent. For the sake of simplicity but without
loss of generality, ψS = 0 is settled since the absolute
azimuth angle is irrelevant due to the rotation symmetry
of the coordinate. Thus, the input scalar vortex can be
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FIG. 3. Transformations on scalar vortices. (a) The design parameters {ψD, ψB, ψR} of Jones matrices for optical plates P1–P4 from the top
down. (b) The contributions for OAM variations from dynamic term Cd and geometric term Cg for designed input SOP {2ψS, 2χS} = {0, 50◦}.
Note that we set IE(φ) = 1. (c) SOP trace on the Poincaré sphere (top panel) and spatial distribution of SOP (middle and bottom panels) for
input (left panel) and output (right panel) fields with a designed P2P transformation. For the same input SOP but different OAM charges (l = 0
(middle panel) or l = 1 (bottom panel)), they can be transferred to both the same SOP and OAM variation by any of P1–P4. (d) SOP trace on
the Poincaré sphere (left panel) and spatial distribution of SOP (left panel) for input fields with SOP {2ψS, 2χS} = {0, 80◦} (top panel). The
transferred fields are not the same due to different attributes of dynamic (P1, middle panel) and geometric (P2, bottom panel) contributions.

expressed as |a+〉 = eilφ (cos(χS), i sin(χS))T. The
output vortex (|b+〉) is considered as |b+〉 =
ei(l+�l)φ (cos(χS),−i sin(χS))T with a flipped handedness
and OAM variation of �l after a optical element, which is
described by Jones matrix J (see the inset of Fig. 1). It is
easy to find that, for such a transformation |b+〉 = J|a+〉,
the term eilφ can be canceled so that the transformation is
independent on OAM charge of input beam. Generally,
J would be linearly birefringent without considering
chiral or magneto-optic materials, thus the eigenstates

of J are two linear and orthogonal eigen-polarizations.
Considering the unitary nature of J, the eigenvalues
of J are given by eiψD{e−iψB/2, eiψB/2} with dynamic
phase delay ψD and birefringent phase difference ψB.
And the orthogonal eigen-polarizations can be written
as R(ψR)(1, 0)T and R(ψR)(0, 1)T, where R(·) is the
standard rotation matrix and ψR is the orientation angle of
linear eigen-polarizations. Thus, for the considered optical
elements, the transformation matrix J can be determined by
three parameters {ψD(φ), ψB(φ), ψR(φ)} with each φ,

J = eiψD

[
cos

(
ψB

2

) − i sin
(

ψB

2

)
cos(2ψR) −i sin

(
ψB

2

)
sin(2ψR)

−i sin
(

ψB

2

)
sin(2ψR) cos

(
ψB

2

) + i sin
(

ψB

2

)
cos(2ψR)

]
. (6)

It should be noticed that there are only two equations
(|b+〉 = J|a+〉) to confine the relations of such three param-
eters. Thus, there would be various strategies to set the J
with the same transformation result. In other words, once the
dynamic phase delay ψD(φ) is assigned, a combination of
{ψB(φ), ψR(φ)} can always be found. Obviously, it is a family
of optical plates to perform the P2P transformation that only
relies on input SOP, regardless of the carried OAM charge
(details are discussed in Appendix C). To demonstrate such a
unique feature, some simulations have been carried out.

In Fig. 3, four different optical plates (denoted as P1–
P4) are designed to transform left-handed elliptical polariza-
tion ({2ψS, 2χS} = {0, 50◦}) vortex to right-handed elliptical
polarization ({2ψS, 2χS} = {0,−50◦}) vortex with �l = 1.
Figure 3(a) shows the parameters of J for each optical plate

and Fig. 3(b) shows the corresponding dynamic term Cd and
geometric term CJ

g that would induce the OAM variations
(it should be noted that CV

g = 0). For P1 and P2, the OAM
variation is purely induced by dynamic or geometric con-
tributions, respectively. Both ψB and ψR keep constant for
P1, while ψD keeps constant for P2. As a comparison, both
dynamic and geometric terms would contribute to the OAM
variation for P3 and P4. Both Cd and Cg are designed as
homogeneous and inhomogeneous distribution along φ for P3
and P4, respectively. Obviously, P4 is a more general and
flexible example. Moreover, the corresponding SOP on the
Poincaré sphere and the electric field distribution have been
calculated for each optical plate to verify the equivalence of
the considered transformations. As expected, the final results
are the same for P1–P4 as shown in Figure 3(c). It can also be
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found that the same OAM variation (�l = 1) can be obtained
with input of l = 0 or l = 1 for P1–P4. It coincides with
that the OAM variation is independent of the input OAM
charge.

It should be mentioned that if the SOP of input light
changes, P1–P4 will introduce different transformations since
the geometric contribution depends on the SOP of the in-
put beam. Thus, different designs of optical plates would
introduce diverse variations of SAM and OAM when the
SOP of input beam does not match the designed one. Fig-
ure 3(d) shows the transformations for input plane-wave with
polarization {2ψS, 2χS} = {0, 80◦} by P1 and P2. For P1,
the output is still a scalar vortex with l = 1 since there is
the only pure dynamic contribution as shown in Fig. 3(d).
However, the average OAM variation �l̄ would equal 0.87
for P2 and the output would be a vector vortex as shown
in Fig. 3(d). The reason is that both two geometrical terms
would contribute to the OAM variation (see Fig. 7). For
the orthogonal input SOPs (antipodal points on the Poincaré
sphere), there are equal but opposite geometric contributions
since they have opposite evolution direction on the Poincaré
sphere. Thus, the same dynamic term Cd and opposite geo-
metric term Cg would be introduced and the final result is
�l̄ ∝ Cd ± Cg. For a desired OAM variation with the given
SOP, the introduced contributions can be dynamic and/or
geometric. Thus, the design of P2P transformations is flexible
and fully controllable according to requirements. But it should
be noticed that the dynamic phase based optical elements have
a SOP-independent response while geometric phase based
optical elements are completely SOP-dependent. Thus, the
SOP-bandwidth of the optical elements would be narrower if
more geometric contribution is introduced. Such issue should
be considered for specific applications.

IV. TRANSFORMATIONS ON VECTOR VORTICES

More generally, Eq. (5) can be applied on transforming
vector vortices. As shown in Fig. 4(a), the input beam is a
cylindrical vortex with 2χS = 30◦ and l̄ = 0 while the output
beam is another cylindrical vortex with 2χS = −30◦ and l̄ =
1 (see Appendix D and Fig. 8 for {2ψS, 2χS} of the input
and output beams). For such a transformation, the linearly
birefringent unitary J is employed. By numerically solving
the J, the design parameters for three different optical plates
(named P5–P7) are displayed in Fig. 4(b). The corresponding
dynamic and geometric contributions are given in Fig. 4(c).
It can be found that the values of CV

g are the same but not
equal to zero. For these cases, the optical elements have to be
meticulously designed to achieve average OAM variation of
�l̄ = 1. Similar to P2P transformations, P5 is designed with
only dynamic contribution Cd and P6 is with only geometric
contribution CJ

g. Moreover, both two terms are designed for
P7. Though the designs are not so straightforward as that for
P2P transformation, the portions of dynamic and geometric
contributions are quantitatively controllable by careful design
of optical elements with Eq. (5), which is very important to the
modern precise measurement and control. It should be noticed
that there is no theoretical limitation for applying Eq. (5) on
designing optical elements. However, in reality, it is not easy
to achieve arbitrary transformation on vector vortices since

Input Output(a)

(b) (c)

FIG. 4. Transformations on vector vortex. (a) SOP trace on the
Poincaré sphere and spatial distribution of SOP for input (left panel)
and output (right panel) vector vortices with a designed transfor-
mation by any of optical plates P5–P7. (b) The design parameters
{ψD, ψB, ψR} of Jones matrices for optical plates P5–P7 from the
top down. (c) The contributions for OAM variation from dynamic
term Cd, geometric term CJ

g and CV
g for input vector vortex shown in

(a) from the top down. The contribution from CV
g are the same for

any of P5–P7. Note that we set IE(φ) = 1.

the physically implemented Jones matrices would be limited
by the available materials and structures.

V. DISCUSSION

So far, there are three common optical plates—spiral phase
plates, q-plates, and J-plates, which have been employed
to generate and manipulate OAM beams [21,22,24,35–37].
Actually, for all of them, the operation mechanism can be
understood and explained by our theoretical approach. Here,
some discussions and comments will be given. For spiral
phase plates (SPPs), there are two types according to Eq. (5).
The first one (SPP-I) is fabricated with homogeneous mate-
rials and the required phase delay is introduced by the spiral
design of the plate [35]. Thus, there is only the pure dynamic
contribution so that the same dynamic phase, as well as the
same OAM variation, can be obtained in spite of the SOP
of input beams. For the second type (SPP-II), the desired
OAM variation can be achieved only for a specific SOP of the
input beam while the output beam would have the same SOP
[21]. Thus, SPP-II is a particular case of P2P transformation,
where the SOP of the input beam is just coincided with one
of the eigen-polarizations of the plate and the SOP would be
maintained. Since it just works for a specific SOP, it is not a
pure dynamic phase based optical plate. Actually, for SPP-II,
both the dynamic and geometric contributions have to be taken
into account for the OAM variations case by case. Obviously,
the operation mechanism of SPP-II is totally different with
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SPP-I
SPP-II
J-plate
q-plate

(a) (b)

0 1 2 0 1 2

0

0

0
0

0

4

FIG. 5. Features of spiral phase plates (SPPs), J-plates, and q-
plates. (a) Design parameters {ψD, ψB, ψR} of Jones matrices from
the top down. For SPP-I and SPP-II, the desired OAM variation
is �l and the portion from dynamic contribution is set as t for
SPP-II. For J-plate, the desired OAM variation is �l1/2 for input
light with left-/right-handed circular polarization. For q-plate, the
desired OAM variation is ±�l for input light with left-/right-handed
circular polarization. (b) The corresponding dynamic (upper panel)
and geometric (lower panel) contributions for OAM variation. For
J-plate and q-plate, the opposite geometric contributions will be
induced according to handedness of input light.

SPP-I since the OAM variation is not solely introduced by
dynamic contribution.

For the J-plate [24], it could be considered as a special
type of P2P transformation. The special constraint is that the
orthogonal SOPs of input beam should be transferred to a
flipped handedness with a different OAM variation at the same
time. As shown in the inset of Fig. 1, for a J-plate, the OAM
variation �l1 and �l2 should be obtained for |b+〉 = J|a+〉
and |b−〉 = J|a−〉, respectively and simultaneously. Accord-
ing to our framework, it means that the dynamic contributions
are always the same but the geometric contributions are
opposite for orthogonal input SOPs. Thus, the J-plate can
be designed as that the dynamic OAM variation is (�l1 +
�l2)/2 and the opposite geometric OAM variation should
be ±(�l1 − �l2)/2 according to the handedness of SOP of
the input beam. Then the combinations of three parameters
{ψD, ψB, ψR} can be readily obtained. Particularly, if the input
field is circular polarization (2χS = ±π/2), three parameters
would hold simple relations as shown in Fig. 5(a). This kind
of J-plates is a half-plate and can flip circular SOP with
different OAM variations. Specifically, if �l1 = −�l2 = �l,
it is the well-known q-plate, in which only the pure geometric
contribution is introduced [22,36,37] (see Appendix C for
details). The full parameters of J for these mentioned optical
plates and the corresponding contributions of each term for
OAM variations are summarized and presented in Fig. 5.

As a summary, this work presents an explicit formula
to evaluate the OAM variation due to the optical elements
in terms of both dynamic and geometric phases. With the
help of the topological Pancharatnam charge, the geometric

phases can be further separated into two parts. One is directly
related to optical elements and the other one solely relies on
SOPs of the input and output light beams. Such treatment
is not just a mathematical trick but would introduce a new
viewpoint to fully understand the operation mechanism and
would be helpful to explore the flexibility of designing the
optical elements according to the applications. For instance,
pure dynamic contribution based optical plates can implement
identical OAM variations in spite of the SOP of input beam
while pure geometric contribution based optical plates can
serve as a mode sorter for both SAM and OAM in modern
optical communication systems. Moreover, our theoretical
approach can be employed for the optical systems to analyze
influences due to the dynamic and geometric phases. In this
work, only the case of linear orthogonal eigen-polarizations
of the Jones matrix is considered since it is the common
response of most materials and structures. It should be men-
tioned that our theoretical approach is not limited by this
constraint. Actually, if the eigen-polarizations of the Jones
matrix could be arbitrary, more complicated functions can be
achieved for various potential applications. Additionally, there
are several assumptions in our theoretical deduction such as
unitary Jones matrix, paraxial beam, and fully polarized fields.
Actually, breaking either of them would introduce some more
interesting investigations, e.g., considering inhomogeneous
Jones matrix [38], non-Hermitian (including PT-symmetry)
systems [39], or nonreciprocal systems [40]. Furthermore,
only classical light fields are considered in our work, but
we believe that the similar work about quantum counterpart
would bring more things of new physics and our work could
evoke some fundamental research about spin-orbit interaction
and the related topics.
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APPENDIX A: ORBITAL ANGULAR MOMENTUM
OF AN OPTICAL VORTEX

Under the paraxial approximation, the electric and mag-
netic fields of a fully polarized vector vortex beam of angular
frequency ω propagating along z direction can be written
as [27]

E(x, y) = iω

[
αx̂ + βŷ + i

k

(
∂α

∂x
+ ∂β

∂y

)
ẑ
]
eikz,

(A1)

B(x, y) = ik

[
−βx̂ + αŷ + i

k

(
−∂β

∂x
+ ∂α

∂y

)
ẑ
]
eikz,

where α and β represent the complex amplitude of x and
y component of electric field, respectively. They can be
written as

α(x, y) =
√

IE(x, y)ax (x, y),
(A2)

β(x, y) =
√

IE(x, y)ay (x, y),
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where ax (ay ) = α(β )/
√

IE are normalized electric field com-
ponents with electric intensity of IE = |α|2 + |β|2. So the
polarization state of this light at each site can be described
by a 2 × 1 Jones vector |a〉 = (ax, ay )T. Then, Stokes vector
S = (S1, S2, S3)T is defined by Sj = 〈a|σ j |a〉(j = 1, 2, 3),
where σ j are the Pauli matrices [28],

σ 1 =
(

1 0
0 −1

)
, σ 2 =

(
0 1
1 0

)
, σ 3 =

(
0 −i

i 0

)
.

Meanwhile, S0 = 〈a|σ 0|a〉, where σ 0 equals 2 × 2 iden-
tity matrix. Thus, for left/right circularly polarized light
field |e±〉 = (1/

√
2)(1,±i)T, there is S3 = ±1. Then plotting

Stokes vector S on three-dimensional Cartesian coordinates,
the Poincaré sphere could be constructed and the correspond-
ing azimuth (ψS) and ellipticity (χS) angles are resolved by,
respectively,

tan(2ψS) = S2/S1, (A3a)

sin(2χS) = S3/S0. (A3b)

The linear momentum density, which is defined as p =
ε0E × B, can be expressed and divided into transverse and
longitudinal components,

p⊥ = i
ωε0

2
[(α∇α∗ + β∇β∗ − α∗∇α − β∗∇β )

+ 2∇ × ((α∗β − β∗α)ẑ)], (A4a)

pz = ωkε0(|α|2 + |β|2) = ωkε0IES0. (A4b)

Meanwhile, the energy density of such a beam is

w = cpz = ε0ω
2(|α|2 + |β|2) = ε0ω

2IES0. (A5)

Then, the cross product of linear momentum density with
r (radius vector) gives the angular momentum density, so z

component of angular momentum density is

jz = (r × p)z

= i
ωε0

2

[(
α

∂

∂φ
α∗ + β

∂

∂φ
β∗ − α∗ ∂

∂φ
α − β∗ ∂

∂φ
β

)

+ 2r
∂

∂r
(α∗β − β∗α)

]
. (A6)

Further, jz can be divided into spin and orbital parts as

js
z = iωε0r

∂

∂r

(
α∗β − β∗α

) = ωε0r
∂ (IES3)

∂r
, (A7a)

jo
z = i

ωε0

2

(
α

∂

∂φ
α∗ + β

∂

∂φ
β∗ − α∗ ∂

∂φ
α − β∗ ∂

∂φ
β

)
.

(A7b)

With the ratio of angular momentum to energy that is exam-
ined by Allen [30], the average SAM charge and OAM charge
can be calculated as

s̄ = ω

∫∫
js
zrdrdφ∫∫

wrdrdφ
=

∫∫
IES3rdrdφ∫∫
IES0rdrdφ

, (A8a)

l̄ = ω

∫∫
jo
zrdrdφ∫∫

wrdrdφ
=

∫∫
jo
zrdrdφ

ωε0
∫∫

IES0rdrdφ
. (A8b)

Then, we introduce the phase difference for two different
SOPs of |eA〉 and |eB〉 through the Pancharatnam connection,
which is defined by [32]

ψP = arg(〈eA|eB〉). (A9)

Here, using left/right circularly polarized fields as refer-
ence fields, the phase difference for any field |a〉 = (ax, ay )T

can be written as

ψP± = arg(〈e±|a〉). (A10)

According to Ref. [10], we can obtain

jo
z

ωε0IE
= S0

∂ψP±
∂φ

± (S0 ∓ S3)
∂ψS

∂φ
, (A11)

then using Eq. (A11), we can get a relation

∂ψS

∂φ
= −1

2

(
∂ψP+
∂φ

− ∂ψP−
∂φ

)
, (A12)

then Eq. (A11) can be rewritten as

jo
z

ωε0IE
= 1

2

[
(S0 + S3)

∂ψP+
∂φ

+ (S0 − S3)
∂ψP−
∂φ

]
. (A13)

Substituting Eq. (A11) or (A13) into Eq. (A8b), we can
calculate the average OAM charge for any vortex beams. In
Eqs. (A11) and (A13), the derivative of ψP± is known as the
topological Pancharatnam charge. With Eq. (A11), we have
found that the OAM of a vector vortex can be divided into two
parts: the topological Pancharatnam charge and contribution
from geometric phase induced by space-variant SOP of light
fields, which is consistent with the reported results [6,7]
and more detailed discussions were provided in our previous
work [10].

APPENDIX B: OAM VARIATION INDUCED
BY OPTICAL ELEMENTS

Here, we consider a scenario that the light beam passes
through a nonabsorbing optical element and investigate the
OAM variation induced by this optical element, which is
characterized by a unitary Jones matrix J (i.e., J† = J−1) with
the eigenvalues of μ1(2), eigenstates of |q1(2)〉, and the corre-
sponding Stokes vectors of SJ = Sq1 = −Sq2 = (SJ

1, S
J
2, S

J
3)T

(SJ
j = 〈q1|σ j |q1〉) [28]. When light field |a〉 passes through

the optical element J, the output beam can be expressed
as |b〉 = J|a〉. From Eq. (A8b), it could be known that the
variation of OAM simply depends on the variation of jo

z due
to nonabsorbing nature (I a

E = I b
E = IE). Then with Eqs. (A12)

and (A13), the variation of jo
z can be deduced as

�jo
z

ωε0IE
= 1

2

[(
Sb

3 − Sa
3

)∂ψa
P+

∂φ
+ (

Sb
0 + Sb

3

)∂ψa→b
P+

∂φ

+ (
Sa

3 − Sb
3

)∂ψa
P−

∂φ
+ (

Sb
0 − Sb

3

)∂ψa→b
P−

∂φ

]
, (B1)

where the superscript a(b) refers to the parameters related
to state |a〉(|b〉) and ψa→b

P± = ψb
P± − ψa

P± is the difference of
phases (defined by the Pancharatnam connection) between |a〉
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and |b〉. According to Refs. [28,34], ψa→b
P± can be written as

ψa→b
P± = ψD − �C

abe±

2
+ �J

abb†a†

4
, (B2)

where ψD = arg(μ1μ2)/2 is dynamic phase gained by the
beam when it propagates through the optical element, �C

abe±/2
is the geometric phase, related to the referenced circularly
polarized field, which corresponds to parallel transport of the
state around a closed loop (|a〉 → |b〉 → |e±〉 → |a〉) on the
Poincaré sphere [see Fig. 2(a) in main text], and �J

abb†a†/4 is
the geometric phase introduced by the optical element J. For
the third term, �J

abb†a† is a spherical quadrangle corresponding

to the closed trajectory |a〉 → |b〉 → |b†J〉 → |a†
J 〉 → |a〉, as

shown in Fig. 2(b) in main text, where |a†
J 〉(|b†J〉) holds the

Stokes vector Sa
†
J (b†J ) = Sa(b) − 2(Sa(b) · SJ )SJ.

Further, using Eqs. (A12) and (B2), the Eq. (B1) can be
rewritten as

�jo
z

ωε0IE
= Sb

0
∂ψD

∂φ
+ Sb

0
∂

∂φ

(
�J

abb†a†

4

)

+
[
Sa

3
∂ψa

S

∂φ
− Sb

3
∂ψb

S

∂φ
− Sb

0
∂

∂φ

(
�C

abb†a†

4

)]
, (B3)

where �C
abb†a† is a spherical quadrangle defined by states |a〉,

|b〉, |b†C〉 and |a†
C〉 as shown in Fig. 2(b) in main text, where

|a†
C〉(|b†C〉) holds the Stokes vector Sa

†
C(b†C ) = Sa(b) − 2(Sa(b) ·

Se+ )Se+ . Thus using Eq. (A8b), the variation of OAM charge
can be solved

�l̄ =
∫∫

IE�jo
zrdrdφ

ωε0
∫∫

IESa
0 rdrdφ

. (B4)

It should be noticed that Eq. (B4) is applicable to the
transformation performed by nonabsorbing optical elements.

Note that, for any spherical triangle defined by states
|a〉, |b〉 and |c〉, whose Stokes vectors are Sa , Sb and Sc,

FIG. 6. For the transformation from |a〉 to |b〉, there will be the
introduced dynamic phase ψD and geometric phase �G/4 by an
optical element of {ψD, ψB} and eigen-polarizations |q1(2)〉. �G =
�J

abb†a† is a spherical quadrangle corresponding to the closed tra-

jectory |a〉 → |b〉 → |b†
J 〉 → |a†

J 〉 → |a〉, where |a†
J 〉(|b†

J 〉) holds the

Stokes vector Sa
†
J (b†J ) = Sa(b) − 2(Sa(b) · SJ )SJ

respectively, the triangular area �abc is

�abc = 2arctan

[
Sa · (Sb × Sc )

1 + Sa · Sb + Sb · Sc + Sc · Sa

]
. (B5)

From Eq. (B5), it can found that clockwise and anti-
clockwise walks on the sphere surface will induce opposite
values of solid angles. As shown in Fig. 2(b) in main text,
the spherical lune is shaped by two geodesics connecting
the antipodal states |q1〉 and |q2〉 passing through |a〉 and
|b〉 and forming a dihedral angle ψB = arg(μ2) − arg(μ1) =
arg(μ∗

1μ2), which is introduced by birefringent of optical
element (also see Fig. 6). The corresponding lune area equals
2ψB = �abq1 − �abq2 . In particular, when |q1(2)〉 coincides
with |e±〉, 2ψB also equals 4(ψb

S − ψa
S ). It is easy to find that

there is a relation �C
abb†a† = �abq1 + �abq2 and �J

abb†a† can be
solved by similar approach.

APPENDIX C: P2P TRANSFORMATION
ON SCALAR VORTEX

1. General P2P transformation

The input scalar vortex (|a+〉) is set as polarization azimuth
of ψS, ellipticity of χS and carrying OAM of l,

|a+〉 = eilφR(ψS)

[
cos(χS)
i sin(χS)

]
, (C1)

where R(·) is the standard rotation matrix. Then using an
optical element with Jones matrix J transfers |a+〉 to the
output vortex (|b+〉) with a flipped handedness and OAM
charge m as

|b+〉 = eimφR(ψS)

[
cos(χS)

−i sin(χS)

]
, (C2)

then we can obtain the relation

eimφR(ψS)

[
cos(χS)

−i sin(χS)

]
= eilφJR(ψS)

[
cos(χS)
i sin(χS)

]
. (C3)

For a scalar vortex, due to the rotation symmetry of the
coordinate choice for polarization azimuth, ψS = 0 is settled
for simplicity but without loss of generality, thus Eq. (C3) can
be rewritten as

ei�l1φ

[
cos(χS)

−i sin(χS)

]
= J

[
cos(χS)
i sin(χS)

]
, (C4)

where �l1 = m − l is the variation of OAM from |a+〉 to |b+〉.
Generally, without considering chiral or magneto-optic

materials, J is linearly birefringent and the eigenstates
will correspond to linearly polarized orthogonal eigen-
polarizations. Being unitary, eigenvalues of J are given by
complex exponentials of eiψD{e−iψB/2, eiψB/2} for dynamic
phase delay ψD and birefringent phase difference ψB. And
such two orthogonal eigen-polarizations can be written as
R(ψR)(1, 0)T and R(ψR)(0, 1)T, where ψR is the orientation
angle of eigen-polarizations. Then, for such kinds of optical

043845-8



ORBITAL ANGULAR MOMENTUM INDUCED BY … PHYSICAL REVIEW A 98, 043845 (2018)

elements, the Jones matrix J can be expressed as

J =
(

J1 J2

J3 J4

)
= eiψD

[
cos

(
ψB

2

) − i sin
(

ψB

2

)
cos(2ψR) −i sin

(
ψB

2

)
sin(2ψR)

−i sin
(

ψB

2

)
sin(2ψR) cos

(
ψB

2

) + i sin
(

ψB

2

)
cos(2ψR)

]
. (C5)

From Eq. (C5), it can be found that there are there parameters {ψD(φ), ψB(φ), ψR(φ)} to determine the Jones matrix for each
φ, while there are just two equations to define their relations by Eq. (C4). The result is that we have infinite choices to construct
J to achieve the same transformation. That is, once a contribution from dynamic phase delay ψD(φ) is set, we always can find a
selection of {ψB(φ), ψR(φ)}. Combining Eqs. (C4) and (C5), we can rewrite J as

J = eiψD

[
cos(�l1φ − ψD) cos(2χS) + i sin(�l1φ − ψD) −i cos(�l1φ − ψD) sin(2χS)

−i cos(�l1φ − ψD) sin(2χS) cos(�l1φ − ψD) cos(2χS) − i sin(�l1φ − ψD)

]
. (C6)

With Eqs. (C5) and (C6), for any input light with SOP
of χS to obtain a desired OAM variation �l1, the design of
three parameters {ψD(φ), ψB(φ), ψR(φ)} can be solved for J
of optical element.

To present the effect from {ψD, ψB} of the optical element,
we give some comments and discussions on the considered
transformation. As shown in Fig. 6, for the input state |a〉,
we can use a geodesic arc join |q1〉, |a〉 and |q2〉 and let
the arc go a rotation of ψB around the axis defined by its
eigen-polarizations |q1(2)〉. Then the final state |b〉 can be
obtained on the corresponding location as shown in Fig. 6.
From such a transformation, the introduced dynamic phase is
always equal to ψD, while the introduced geometric phase is
�G/4 = �J

abb†a†/4. It is easy to find that the geometric phase
equals −ψB/2 if |a〉 = |q1〉 and ψB/2 if |a〉 = |q2〉. Moreover,
if the input SOP is orthogonal to |a〉, i.e., the antipodal point
on the Poincaré sphere, the evolution will encircle on an
opposite direction but the same area using the same optical
element, this means that the introduced geometric phase is
−�G/4 for input light with orthogonal SOP.

2. J-plates and q-plates

For the J-plates [24], there is a special constrain on P2P
transformation. That is, the input field with an orthogonal SOP
and OAM charge of k gives

|a−〉 = eikφR(ψS)

[
i sin(χS)
cos(χS)

]
, (C7)

and the transferred output field with a flipped handedness and
OAM charge of n, yielding

|b−〉 = einφR(ψS)

[−i sin(χS)
cos(χS)

]
. (C8)

With the similar approach and setting ψS = 0, we can find
another relation for J as

ei�l2φ

[−i sin(χS)
cos(χS)

]
= J

[
i sin(χS)
cos(χS)

]
, (C9)

where �l2 = n − k is the variation of OAM from |a−〉 to |b−〉.
Then, combining Eqs. (C4) and (C9), we can get the design
parameters of J. For a special and simple case of input field
with circular polarization (2χS = π/2), the combination of
Eqs. (C4) and (C9) can reduce J to

J1 = −J4 = 1

2
(ei�l1φ − ei�l2φ )

J2 = J3 = − i

2
(ei�l1φ + ei�l2φ ). (C10)

From Eq. (C10), we can find the eigenvalues as

μ1 = i exp

[
i(�l1 + �l2)φ

2

]

μ2 = −i exp

[
i(�l1 + �l2)φ

2

]
, (C11)

and eigen-polarizations as

|q1〉 = R
[

(�l1 − �l2)φ − π

4

](
1
0

)

|q2〉 = R
[

(�l1 − �l2)φ − π

4

](
0
1

)
, (C12)

thus the parameters {ψD(φ), ψB(φ), ψR(φ)} for J can be
found as

ψD(φ) = (�l1 + �l2)φ

2

ψB(φ) = π (C13)

ψR(φ) = (�l1 − �l2)φ − π

4
.

It can be found that this kind of J-plates is a half-plate but
possesses space-variant dynamic phase delay and orientation
angle and can transform scalar vortices with circular polariza-
tions. Further, q-plates would be as a special case of J-plate
with opposite variation of OAM, i.e., �l1 = −�l2. Thus, for
the q-plate, there is only the contribution from geometric
phases while none from dynamic phases. It should be noted
that, for J-plates and q-plates, the geometric contributions ac-
tually come from the third term of Eq. (B3). And to calculate
the OAM variation, ψS should be calculated using Eq. (A12)
while not Eq. (A3a) due to there is a singularity for circu-
larly polarized fields. And this singularity also induces the
geometric contribution coming from CV

g while not CJ
g, which

is different from the demonstration of P2P transformation in
main text. However, this phenomenon occurs just because the
circularly polarized fields are selected as the reference fields
and it can be resolved if another pair of reference fields are
adopted.

3. Spiral phase plates (SPPs)

a. Type I. This type of spiral phase plates (SPP-I) is fabri-
cated with homogeneous materials and can provide required
phase delay by designing path length. In the transforma-
tion, only dynamic phases ψD(φ) should be considered since
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φ/π

Ein.2ψS

Ein.2χS

Eout.2ψS

Eout.2χS

φ/π

Cd

CJ
g

CV
g

Cd + Cg

FIG. 7. Transformation with P2 for input light with SOP of {2ψS, 2χS} = {0, 80◦}. (a) SOPs for input and output fields. (b) Detailed
contributions for OAM variation from each term.

ψB(φ) = 0. From Eq. (C5), the corresponding Jones matrix
for this kind of spiral phase plates can be written

J = eiψD

(
1 0
0 1

)
. (C14)

So they can not change the SOP but always introduce the
same dynamic phase for any SOP. That is to say the same
OAM variation can be achieved for any input fields.

b. Type II. There is another kind of spiral phase plates (SPP-
II), which can provide a desired OAM variation only for a
specific SOP of input light beam and the output possessing the
same SOP. Actually, the input SOP is just coincided with one
of eigen-polarizations so that the dynamic or geometric phase
or both of them would contribute to the OAM variations. For
simplicity, we set the input SOP as {2ψS, 2χS} = {0, 0} (i.e.,
ψR(φ) = 0). Thus, with Eq. (C5), we can obtain the Jones
matrix

J = eiψD

(
e−iψB/2 0

0 eiψB/2

)
. (C15)

ψ
S
/
π

Ein

Eout

2
χ

S

φ/π

FIG. 8. SOPs for input and output vector vortices shown in
Fig. 4 in main text. (a) Azimuth angle ψS of the vector vortices.
(b) Ellipticity angle χS of the vector vortices.

It can found that all the contribution comes from geo-
metric phase if ψD(φ) = 0. For this case, the orthogonal
input SOPs will get opposite OAM variations. There is an-
other extreme case of ψB(φ) = 0, which is exactly the SPP-
I plate. Overall, this type of plates actually is a common
P2P transformation plate with the same input and output
SOPs.

APPENDIX D: VORTEX BEAMS IN NUMERICAL
SIMULATIONS

For general vector beams, such as cylindrical vortices, the
field can be expressed as

E(φ) = 1√
2

cos

(
π

4
− χS

)
(x̂ + iŷ)ei(lLφ−ψS )

+ 1√
2

sin

(
π

4
− χS

)
(x̂ − iŷ)ei(lRφ+ψS ), (D1)

where lL and lR are topological charges of field components
with left and right-handed circular polarization, respectively.
With Eq. (D1), there is IE(φ) = 1. For a scalar vortex beam
with topological charge l, it is easy to be obtained by setting
lL = lR = l. For P2P transformation shown in Fig. 3(c) in the
main text, we set the input light with SOP of {2ψS, 2χS} =
{0, 50◦} and topological charge of lL = lR = 0 or 1. For the
transformation shown in Fig. 3(d) in the main text, we set
the input light with {2ψS, 2χS} = {0, 80◦} and lL = lR = 0,
where the transformation with P2 is detailed in Fig. 7. And
for the transformation on vector vortex shown in Fig. 4 in the
main text, we set the input light with SOP of {2ψS, 2χS} =
{2π − 4φ, π/6} and topological charge of {lL, lR} = {1,−3},
and the detailed SOPs of input and output vector vortices are
presented in Fig. 8.
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