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Spectral imaging paves the way for various fields, particularly in biomedical research. However, spectral imaging,
mainly depending on spatial or temporal scanning, cannot achieve high temporal, spatial, and spectral resolution
simultaneously. In this study, we demonstrated a silicon real-time ultraspectral imaging chip based on reconfigurable
metasurfaces, comprising 155,216 (356 × 436) image-adaptive microspectrometers with ultra-high center-wavelength
accuracy of 0.04 nm and spectral resolution of 0.8 nm. It is employed for imaging brain hemodynamics, and the dynamic
spectral absorption properties of deoxyhemoglobin and oxyhemoglobin in a rat barrel cortex were obtained, which
enlighten spectroscopy in vivo studies and other real-time applications. © 2022 Optical Society of America under the terms

of the OSA Open Access Publishing Agreement

https://doi.org/10.1364/OPTICA.440013

1. INTRODUCTION

Spectral imaging technology captures both spatial and spectral
information for all points in the field of view [1,2], and it has been
applied in various fields, such as health, remote sensing, military,
environmental monitoring [3], mining and geology [4], agricul-
ture [5], and astronomy [6]. Real-time spectral imaging (RTSI)
has shown great potential in biomedical research. The cortical
spectral imaging technique has been used to study brain behavior
and cortical activity patterns by continuously recording the hemo-
dynamic responses to reveal the underlying mechanism of complex
brain functions [7–13]. However, because only few wavelength
band data can be acquired continuously for the indicators [14],
it is necessary to develop a broad spectral imaging method with
high temporal and spatial resolutions for dynamic brain spectra.
Nonetheless, spectral imaging still mainly depends on spatial or
temporal scanning [15–20], which cannot achieve high temporal,
spatial, and spectral resolution simultaneously.

In recent years, spectral devices based on micro/nano filters
have been used to improve the integration and miniaturization of
on-chip spectral devices. There are two main types of micro-nano
filters: resonant filters and broadband filters. Resonant filters, such
as micro-ring resonators [21–23], optical microcavities [24,25],
and resonant metasurface structures [26–28], perform spectral
analysis by filtering light of different wavelengths separately and
offer a relatively high spectral resolution. However, it is difficult

to simultaneously produce a broad spectrum and high resolution
using resonant filters considering the number of spectral channels
corresponds to the number of filters. In contrast, broadband filters,
such as quantum dot arrays [29], photonic crystal plate arrays
[30,31], disordered scattering structures [32], and nanowires with
tunable bandgaps [33] encode the spectral information of incident
light into the response of a set of filters at different detector posi-
tions and use a computational spectral algorithm to reconstruct
the incident spectrum [29–35]. Because spectral information can
be reconstructed for multiple wavelength points using fewer filter
structures, it makes developing a microspectrometer possible.
However, despite extensive research on the potential of integrated
microspectrometers to replace current spectrometers with complex
structures and large volumes [29,30,32,33,36], the RTSI require-
ments could not be met. Therefore, developing new mechanisms
to implement RTSI to analyze highly complex brain activities and
various practical applications is still a big challenge.

In this study, we fabricated an RTSI chip based on a recon-
figurable metasurface supercell on a CMOS image sensor (CIS)
for imaging brain hemodynamics. Several locally distributed
metasurface units can be dynamically combined and multi-
plexed in the metasurface supercell to reconfigure image-adaptive
microspectrometers. As a result, we realized 155,216 (356× 436)
microspectrometers on a CIS chip no larger than 0.5 cm2 with
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an ultra-high center-wavelength accuracy of 0.04 nm and spec-
tral resolution of 0.8 nm. The RTSI chip was used for imaging a
rat’s brain, which continuously monitored the dynamic absorp-
tion properties of deoxyhemoglobin and oxyhemoglobin over
different wavelength bands, which are the indicators of neural
activities. The result showed that the proposed chip is a promising
method for studying brain functions pertaining to hemodynamics.
Additionally, this scheme of reconfigurable metasurfaces allows
the device to be directly extended to almost any commercial cam-
era to seamlessly switch the information between the image and
spectral image. Furthermore, spectral reconstruction can be easily
combined with image recognition, which is significant in practical
real-time applications.

2. DESIGN OF THE PROPOSED RTSI CHIP WITH
RECONFIGURABLE METASURFACES

As shown in Figs. 1(a) and 1(b), the proposed RTSI chip was
designed by integrating a reconfigurable metasurface supercell
on top of a CIS. All metasurface units [Fig. 1(b)] on the supercell
can be dynamically combined and multiplexed to form thousands
of image-adaptive microspectrometers [shown inset of Fig. 1(a)]
using an image-adaptive processing algorithm (See Supplement
1, S5), resulting in the best trade-off between spatial resolution
and spectral density. Additionally, the metasurface units operated
as polarization-independent broadband filters to realize incident
light modulation for all microspectrometers simultaneously,
thereby ensuring the real-time imaging of the CIS, as shown in

Figs. 1(c) and 1(d). Moreover, the spectrum of incident light can
be modulated with a high degree of freedom using the proposed
reconfigurable metasurface supercell [Fig. 1(d) and Supplement
1, S1]. Lastly, the output signals from the different modulation
regions are collected by the CIS chip, and the incident spectrum is
reconstructed by grafting the compressed sensing algorithm.

As many as 155,216 (356× 436) microspectrometers can
be formed for the demonstrated RTSI chip using the reconfig-
urable supercell, where 400 metasurface units with different
patterns form one base cell and 396 such base cells are arrayed as
18× 22, as shown in Fig. 2. As a result, 155,216 microspectrom-
eters can obtain spectral information at one time using the CIS,
demonstrating the high temporal and spatial resolution of the
device.

Electron beam lithography was used to form design patterns for
the reconfigurable metasurface supercell (see details in Supplement
1, S3) on a 220 nm thick silicon-on-insulator (SOI) chip. The
patterns were then transferred onto a silicon layer using inductively
coupled plasma etching. Subsequently, the middle silicon dioxide
layer was removed by wet etching using buffered hydrofluoric
acid, resulting in the suspension of the metasurface supercell.
Lastly, the top silicon layer of the SOI comprising the suspended
metasurface supercell was transferred on top of a CIS chip using
the polydimethylsiloxane (PDMS) transfer approach (see details
in Supplement 1, S3). The proposed device can be fabricated
entirely using the CMOS-compatible processing technology,
which reduces the production cost.

Fig. 1. Images showing the operation of the proposed ultraspectral imaging device. (a) The device comprises a reconfigurable metasurface supercell with
158,400 metasurface units and can form up to 155,216 microspectrometers when integrated with a commercial CMOS image sensor (CIS) chip (Thorlab
DCC3260M). During the spectral reconstruction of an object, the adjacent metasurface units in the metasurface supercell are dynamically combined into
a reconfigurable and image-adaptive microspectrometer, as shown in the zoomed-in figures, where the red and white areas represent two irregular shaped
microspectrometer separated by the edges of the image. (b) Schematic of the fundamental modulation unit comprising the metasurface, microlens (used to
improve quantum efficiency), and CMOS image sensor from top to bottom. (c) Snapshot of spectral imaging. The light of the object to be imaged is inci-
dent on the metasurface supercell. (d) SEM images of the selected metasurface units with C4 symmetry. The corresponding modified transmission spectral
curve is characterized using a monochromator for calibration. Hi j denotes the modified transmission of the i th metasurface at the j th wavelength sampling
point.

https://doi.org/10.6084/m9.figshare.19391345
https://doi.org/10.6084/m9.figshare.19391345
https://doi.org/10.6084/m9.figshare.19391345
https://doi.org/10.6084/m9.figshare.19391345
https://doi.org/10.6084/m9.figshare.19391345
https://doi.org/10.6084/m9.figshare.19391345
https://doi.org/10.6084/m9.figshare.19391345


Research Article Vol. 9, No. 5 / May 2022 / Optica 463

Fig. 2. Reconfiguration of the metasurface units. (a) the base cell comprises 20× 20= 400 metasurface units. Pixels with different gray scale values
represent the unique transmission spectrum of the metasurface units. (b) The supercell comprises 18× 22= 396 base cells (i.e., 360× 440= 158,400
metasurface units). The spectral imaging camera comprises a CMOS imaging sensor with the supercell chip attached to the surface. (c) A reconfigurable
microspectrometer can be constructed in any position on the base cell. The microspectrometer exhibits a flexible shape and can be square (region 1) or
irregular (region 2,3). Moreover, microspectrometers 1 and 2 share a common metasurface unit, thereby demonstrating the spatial multiplexing of meta-
surface units. In extreme cases of multiplexing, the entire supercell can be constructed into 356× 436 microspectrometers. (d) matrix equation, discretized
from the integral equation [Eq. (1)]. In the matrix, we select some rows to form the corresponding microspectrometers shown in panel c.

The intensities of modulated incident light were recorded by
the underlying CIS chip in the reconfigurable metasurface super-
cell, as shown in Fig. 1(c). Then, the recorded data were processed
and reconstructed into the incident spectrum using an algorithm.
Herein, we introduced the working principle of a single microspec-
trometer. The transmission response of the i th metasurface unit is
denoted as h i (λ) where i = 1, 2, 3, . . . , N, N is the number of
different patterns in a base cell [Fig. 2(a)], λ is the wavelength, and
f (λ) is the incident spectrum to be measured. The signal intensity
Ii received by the CIS below the i th metasurface unit is expressed as

Ii =

∫ λ2

λ1

f (λ)h i (λ)R(λ)P (λ)dλ=
∫ λ2

λ1

f (λ)Hi (λ)dλ, (1)

where Ii is the average signal intensity received by 3× 3 CIS pixels
below one metasurface unit to improve the signal-to-noise ratio
(SNR) and the relaxed alignment requirements during fabrication,
R(λ) is the absorption quantum efficiency of the CIS for wave-
length λ, P (λ) is the dispersion curve of the lens imaging system,
andλ1 andλ2 are the lower and upper limits of the incident spectral
distribution, respectively.

We set Hi (λ)= h i (λ)R(λ)P (λ), which is the modified
transmission spectral curve that can be predetermined through
measurement, as shown in Fig. 1(d) (see Supplement 1, S1 for
details). Furthermore, the integral equations were discretized to
produce the matrix equation, as shown in Fig. 2(d).

Ii is the integral signal intensity of the i th unit. Element fi in
vector f denotes the value of the unknown spectrum f at the i th
wavelength band. Element Hi j in matrix H denotes the transmis-
sion of the i th metasurface at the j th wavelength band (M equals
the number of wavelength bands). Therefore, each row of the
matrix H represents the transmission spectrum of a unique meta-
surface unit, whereas H represents a microspectrometer formed
by the metasurface units. According to the theory of compressed
sensing, H can be treated as a compressed sensing matrix [37] (i.e.,
CS matrix), used to sense the optical spectrum. In the proposed
design, the transmission of every metasurface unit was simulated
using a full-wave simulation software [38,39] to optimize the
requirements of C4 symmetry and compressed sensing [37] (see
details in Supplement 1, S1).

Figures 2(c) and 2(d) show the principle of a reconfigurable
metasurface supercell. We assume that there exists N (N= 400 in
this study) metasurface units (corresponding to a base cell of the
metasurface supercell) with varying transmissions in the region
of interest. Considering the metasurface units are independent,
we can select k number of units to form a CS matrix for spectral
sensing. In this study, we used an image recognition technique to
automatically determine the optimal shape of the microspectrom-
eter, which can effectively avoid individual microspectrometer
crossing image edges, where abrupt changes occur in the spectrum
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(see Supplement 1, S5). In addition, the multiplexing of the meta-
surface can also be applied to improve the spatial resolution, as
shown in Fig. 2(c).

Finally, the algorithm of compressed sensing for the optical
spectrum is grafted after setting up the optimal microspectrome-
ters in the supercell. Dictionary learning based on sparse coding
[40–42] was used to recreate the original spectrum (see
Supplement 1, S4).

3. EXPERIMENTAL RESULTS

Figure 3 shows the experimental results of the measurements of
monochromatic light sources over a spectral range of 450–750 nm
(at 0.5 nm intervals) with unit number k = 25. According to
the theory of compressed sensing, narrowband spectra exhibit

excellent reconstruction quality owing to their natural spar-
sity. Figure 3(a) compares the reconstructed monochromatic
lights from the single microspectrometer of the proposed device
(blue line) and a commercial spectrometer (black dashed line,
OceanView QE Pro). Figure 3(b) shows that the center-wavelength
accuracy of the monochromatic light was approximately 0.04 nm.

Considering the ultraspectral imaging chip can resolve two
monochromatic lights with very similar wavelengths, we reduced
the sampling interval to 0.2 nm and the spectral band to 2 nm
(544.6–546.6 nm) to resolve ultra-fine spectral lines. A pair of
peaks were formed using the 546 nm line of a mercury lamp and
a tunable monochromatic light source. The microspectrometer
effectively resolved the aforementioned double peaks with a wave-
length interval of only 0.8 nm, as shown in Fig. 3(c). Furthermore,
the linewidths of the reconstructed double peaks (blue curves) were
broadened to 0.23 and 0.24 nm. To the best of our knowledge,
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Fig. 3. Replace with the newly provided enhanced PDF image and increase to full 2-column width.
Spectral reconstruction of the monochromatic light sources with k = 25. (a) Reconstruction results (450–750 nm, 0.5 nm intervals) of the narrow-
spectrum lights obtained from the microspectrometer of the proposed device (blue line) and a commercial spectrometer, OceanView QE Pro (black dashed
line). (b) Errors in the reconstruction of the narrow-spectrum light. Here, we assumed the Gaussian envelope for the narrow-spectrum light to estimate the
linewidth and center-wavelength. (c) Reconstruction results of the double peaks corresponding to the 546 nm and 545.2 nm spectral lines of a mercury
lamp and tunable monochromatic light source, respectively, with an interval of 0.8 nm between the two spectral lines. Other spectral lines of the mercury
lamp are removed using filters during measurements.
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this double-peak resolution is the best result obtained for on-chip
spectral imaging devices and is approximately an order of mag-
nitude higher than that obtained using a nanowire spectrometer
(15 nm) [33]. Additionally, the acquired results of double-peak
resolution surpass the results obtained using commercial portable
spectrometers (OceanView QE Pro) by approximately 1.2 nm.

Additionally, the proposed ultraspectral imaging device was
able to accurately reconstruct complex broad spectrum signals in
the visible light region. Figure 4 shows the reconstruction results
for several types of broad spectra. The spectral range was main-
tained to 450–750 nm (0.5 nm interval). The blue and red curves
in Fig. 4 were obtained using the microspectrometer of the pro-
posed device and a commercial spectrometer, respectively, and
served as a reference spectrum. The concept of fidelity was intro-
duced to quantitatively compare the original and reconstructed
spectra as

F (X , Y )=

(∑
m

√
pmqm

)2

, (2)

where X and Y are the normalized original and reconstructed spec-
tra, respectively, and pm and qm are the corresponding intensities
at the mth wavelength sampling point. The fidelities of the broad
spectrum reconstruction obtained in this experiment were above
98%, even with a small number of metasurface units k = 25, as
shown in Figs. 4(a)–4(c), which indicates the good reconstruction
ability of the proposed device.

Furthermore, we investigated the effect of the number of meta-
surface units k in a single microspectrometer on the fidelity of the
reconstructed spectra to evaluate the spatial pixel reconstruction
ability of the proposed device. k units were randomly selected from
N= 400 different metasurface patterns in the region of interest.
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Fig. 4. (a)–(c) Reconstruction results (450–750 nm, 0.5 nm interval) of the three broad spectra obtained using the microspectrometer of the proposed
device (blue curve). The spectra detected by a commercial spectrometer are shown as reference (red dotted curve). Fidelities for the three different spectra
are above 98%, even with a small number of metasurface units k = 25, which indicates high consistency between the reconstructed and reference spectra.
(d) Spectrum reconstruction fidelity of a microspectrometer with different unit number k. The error bars represent the variance in the fidelity obtained by
randomly selecting k units. Herein, the fidelities of the reconstructed spectrum, as shown in panels (a) and (b), are calculated as examples for a complex and
simple spectra, respectively. For k = 25, the fidelities deteriorated relatively but showed good results with values larger than 96%. As k increases, the average
fidelity gradually increases, and variance decreases, which is in agreement with the theoretical analysis.
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Fig. 5. (a) Multi-frame images of rat cerebrovascular captured using an ordinary color camera and the proposed RTSI chip (black and white). A black-
and-white photo was captured using an ordinary LED source. A post-colored spectral image and a data cube with 601 bands were computationally recon-
structed from the spectral imaging data, wherein five single-wavelength spectral images were selected from the 601 bands. The chroma of the spectral image
is reconstructed based on the Commission Internationale de l’Eclairage (CIE) 1931 color space [43]. The gray scale of the spectral image is calculated from
the black-and-white photo to distinguish different regions of the rat brain. (b) An ultraspectral imaging chip with a reconfigurable metasurface supercell is
placed on top of the CIS and used in all experiments conducted in this study. (c) Spectrum reconstruction at k = 100. The reconstructed absorption spec-
tra of oxyhemoglobin (HbO, 577 nm), carboxyhemoglobin (HbCO, 569 nm), deoxyhemoglobin (HbR, 555 nm), and HbO/HbCO (540 nm) were sig-
nificantly visible. (d) Measured spectral intensity data versus time in region 5. The two selected wavelengths (555 and 577 nm) correspond to the absorp-
tion peaks of HbO and HbR, respectively. The inset figure shows the positive correlation between HbO and HbR in the vascular area. (e) Measured spectral
intensity data versus time in region 6. The negative correlation between HbO and HbR in the non-vascular areas can be recognized.
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The error bars represented the variance of the reconstruction fidel-
ity obtained for multiple possible random combinations for each
k value, as shown in Fig. 4(d). As k increased, the reconstruction
error decreased, and the fidelity value increased, which was consis-
tent with the principle of compressed sensing [37]. Moreover, the
k value of a single microspectrometer can be dynamically adjusted
depending on the reconfigurable metasurface supercell by consid-
ering the noise level for achieving an optimal trade-off between
the pixel density and reconstruction quality of the reconstructed
spectra. A small k value (large microspectrometer density) and a
large k value (small microspectrometer density) can be used at low
and high noise levels, respectively. Moreover, a high fidelity can still
be realized with a k value as low as 25 for simple spectra, as shown in
Fig. 4(b).

Lastly, we demonstrated an RTSI video of an in vivo rat brain
using the fabricated device. Figure 5 shows the RTSI results for the
barrel cortex of the rat brain. The RTSI video (see Visualization 1)
was recorded using a microscope with a tenfold objective ampli-
fication, as shown in Fig. 5(a) (see Supplement 1, S6 for details).
Herein, the original images, modulated images, and multi-frame
spectral images are shown, respectively, where the pattern of
microspectrometers is loomed in the latter, and the cerebrovascular
regions are denoted by red dashed lines. We obtained the ultraspec-
tral information over a spectral range of 450–750 nm at a sampling
interval of 0.5 nm using a snapshot for all points in the field of view.
The spatial resolution was 87.9 µm, and we set k = 100 in the
spectrum reconstruction to ensure spectral resolution. Moreover,
we converted the spectrum data to a post-colored spectral image
and a data cube, wherein we selected spectral images at five single
wavelengths of 510, 540, 570, 600, and 630 nm. Figure 5(c) shows
the cerebrovascular spectral reconstruction results of the barrel cor-
tex at selected regions, as shown in Fig. 5(a), where regions 1, 2, and
5 represent the vascular regions and regions 3, 4, and 6 represent
the non-vascular regions. Evidently, the absorption valleys of
oxyhemoglobin (HbO, 577 nm), carboxyhemoglobin (HbCO,
569 nm), deoxyhemoglobin (HbR, 555 nm), and HbO/HbCO
(540 nm) were significantly visible from the characteristic absorp-
tion data of hemoglobin [44,45] (see Supplement 1, S7 for details),
thereby indicating the potential of the proposed RTSI chip for ana-
lyzing the hemoglobin concentration distribution in vivo, which is
closely associated with brain function [8].

Figures 5(d) and 5(e) show the curve of the characteristic spec-
tral intensity change versus time in regions 5 and 6, respectively,
which demonstrates the dynamic variation of hemoglobin. In
the vascular area [region 5 of Fig. 5(d)], the dominant process
is the transport of hemoglobin, which results in a parallel change
in the concentrations of hemoglobin derivatives (a positive corre-
lation with a slope greater than 0). Meanwhile, in the non-vascular
area [region 6 of Fig. 5(e)], the dominant process is the exchange
of oxygen between the capillaries and tissue cells, wherein the
cells absorb oxygen and convert HbO to HbR. Therefore, the
concentrations of HbO and HbR showed a negative correlation
with slopes less than 0, which is consistent with our experimental
results. The demonstrated spectral video of the barrel cortex can
be used to monitor the excited brain regions and study them based
on a millisecond-level real-time response. Therefore, the proposed
RTSI chip can non-invasively analyze brain activity and open a new
avenue for neuroscience and brain science.

4. CONCLUSION

This study proposed and demonstrated an ultraspectral imaging
chip based on a reconfigurable metasurface supercell. Further, an
image-adaptive strategy was employed to provide the best trade-off
between spatial and spectral resolutions. The microspectrome-
ters of the proposed device exhibited a high center-wavelength
accuracy of 0.04 nm, a high spectral resolution of 0.8 nm, and a
broad wavelength range of 300 nm. Compared to the latest report
of on-chip spectrometers [26,29,31,33], this spectral resolu-
tion for a single microspectrometer is considered the best and is
approximately an order of magnitude higher than that obtained
using a nanowire spectrometer (15 nm resolution [33]), while
the spatial resolution (87.9 µm) is maintained at the same magni-
tude (100 µm for the nanowire spectrometer [33]). Meanwhile,
the temporal resolution was improved from a scanning scenario
(<1 Hz [33]) to a real-time scenario (typical value 30 Hz for nor-
mal CIS, maximum value 1000 Hz for high-speed CIS). Therefore,
the proposed reconfigurable chip can be a potential new method
for RTSI with both high spectral and spatial resolutions.

Furthermore, we performed an in vivo experiment on a rat brain
(barrel cortex region) to obtain real-time ultraspectral video with
1λ/λ∼ 0.001 (λ, 450–750 nm;1λ, 0.5 nm interval). The results
show a correlation between the optical spectrum and hemoglobin
concentration. Affected by some defects of the spectral chip and
optical aberration of microscopic imaging systems, the quality of
the video is not very high, which would be improved by further
iterated experiments in order to eventually achieve the dynamic
detection of brain hemoglobin concentration. Finally, we seam-
lessly integrated the reconfigurable metasurface supercell with
commercial cameras to avoid system incompatibility issues and
enable real-time dynamic spectrum measurement in all optical
imaging systems.

Funding. National Key Research and Development Program of China
(2018YFB2200402); National Natural Science Foundation of China
(61775115, 91750206); Beijing Municipal Science and Technology Commission
(Z201100004020010); Beijing National Science Foundation (Z180012); Beijing
Frontier Science Center for Quantum Information of the Ministry of Education of
China; Beijing Academy of Quantum Information Sciences.

Acknowledgment. The authors would like to thank Tianjin H-Chip
Technology Group Corporation and Innovation Center of Advanced
Optoelectronic Chip and Institute for Electronics and Information Technology in
Tianjin, Tsinghua University, for their support during SEM and ICP etching.

Author contributions. X. C. proposed and evaluated the characteristics of
microspectrometers. K. C. conceived the study and proposed a spectral imaging
strategy. J. X. designed the metasurface structures and conducted the spectral
imaging experiments. B. H. and W. L. designed the experimental paradigm used
in the in vivo experiments on rats. Y. H. supervised the project and advised the
device optimization. J. X., K. C., Y. H., B. H., and W. L. wrote the manuscript
with contributions from all other coauthors. H. Z. and Z. Z. participated in the
fabrication process. S. X. and Y. H. participated in the algorithm optimization. F.
L., X. F., and W. Z. provided useful comments on the results. All authors read and
approved the paper.

Disclosures. The authors declare no conflicts of interest.

Data availability. The data supporting the findings of this study, including
the data used for the plots and custom code, are available from the corresponding
author upon reasonable request.

Supplemental document. See Supplement 1 for supporting content.

†These authors contributed equally to this work.

https://doi.org/10.6084/m9.figshare.15139053
https://doi.org/10.6084/m9.figshare.19391345
https://doi.org/10.6084/m9.figshare.19391345
https://doi.org/10.6084/m9.figshare.19391345


Research Article Vol. 9, No. 5 / May 2022 / Optica 468

REFERENCES
1. N. Savage, “Spectrometers,” Nat. Photonics 3, 601–602 (2009).
2. N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging

technologies,” Opt. Eng. 52, 090901 (2013).
3. C. O. Davis, “Applications of hyperspectral imaging in the coastal

ocean,” Proc. SPIE 4816, 33–41 (2002).
4. E. Saralioglu, E. T. Gormus, and O. Gungor, “Mineral exploration

with hyperspectral image fusion,” in 24th Signal Processing
and Communication Application Conference (SIU) (IEEE, 2016),
pp. 1281–1284.

5. C. Champagne, J. Shang, H. McNairn, and T. Fisette, “Exploiting
spectral variation from crop phenology for agricultural land-use
classification,” Proc. SPIE 5884, 588405 (2005).

6. Z. He, R. Shu, and J. Wang, “Imaging spectrometer based on AOTF and
its prospects in deep-space exploration application,” Proc. SPIE 8196,
819625 (2011).

7. D. Malonek and A. Grinvald, “Interactions between electrical activ-
ity and cortical microcirculation revealed by imaging spectroscopy:
implications for functional brain mapping,” Science 272, 551–554
(1996).

8. A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M.
Dale, “Coupling of total hemoglobin concentration, oxygenation, and
neural activity in rat somatosensory cortex,” Neuron 39, 353–359 (2003).

9. A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel,
“Functional architecture of cortex revealed by optical imaging of intrinsic
signals,” Nature 324, 361–364 (1986).

10. W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging
chromophores with undetectable fluorescence by stimulated emission
microscopy,” Nature 461, 1105–1109 (2009).

11. B. R. Chen, M. B. Bouchard, A. F. H. McCaslin, S. A. Burgess, and
E. M. C. Hillman, “High-speed vascular dynamics of the hemodynamic
response,” Neuroimage 54, 1021–1030 (2011).

12. C. H. Chen-Bee, D. B. Polley, B. Brett-Green, N. Prakash, M. C. Kwon,
and R. D. Frostig, “Visualizing and quantifying evoked cortical activ-
ity assessed with intrinsic signal imaging,” J. Neurosci. Methods 97,
157–173 (2000).

13. R. Aronoff and C. C. H. Petersen, “Layer, column and cell-type specific
genetic manipulation in mouse barrel cortex,” Front. Neurosci. 2, 64–71
(2008).

14. J. Pichette, A. Laurence, L. Angulo, F. Lesage, A. Bouthillier, D. K.
Nguyen, and F. Leblond, “Intraoperative video-rate hemodynamic
response assessment in human cortex using snapshot hyperspectral
optical imaging,” Neurophotonics 3, 045003 (2016).

15. M. E. Schaepman, K. I. Itten, D. R. Schlaepfer, et al., “APEX: current sta-
tus of the airborne dispersive pushbroom imaging spectrometer,” Proc.
SPIE 5234, 202–210 (2004).

16. P. Mouroulis, R. O. Green, and T. G. Chrien, “Design of pushbroom imag-
ing spectrometers for optimum recovery of spectroscopic and spatial
information,” Appl. Opt. 39, 2210–2220 (2000).

17. P. Mouroulis, “Pushbroom imaging spectrometer with high spectro-
scopic data fidelity: experimental demonstration,” Opt. Eng. 39,
808–816 (2000).

18. J. Antila, R. Mannila, U. Kantojärvi, C. Holmlund, A. Rissanen, I. Näkki,
J. Ollila, and H. Saari, “Spectral imaging device based on a tuneable
MEMS Fabry-Perot interferometer,”Proc. SPIE 8374, 123–132 (2012).

19. P. D. Atherton, N. K. Reay, J. Ring, and T. R. Hicks, “Tunable Fabry-Perot
filters,” Opt. Eng. 20, 206806 (1981).

20. N. Gupta, “Hyperspectral imager development at Army Research
Laboratory,” Proc. SPIE 6940, 69401P (2008).

21. A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. Roelkens,
“On-chip mid-infrared photothermal spectroscopy using suspended
silicon-on-insulator microring resonators,” ACS Sens. 1, 1301–1307
(2016).

22. A. Nitkowski, L. Chen, and M. Lipson, “Cavity-enhanced on-chip
absorption spectroscopy using microring resonators,” Opt. Express
16, 11930–11936 (2008).

23. Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon
photonics for the mid-infrared and spectroscopic sensing,” ACS Nano
8, 6955–6961 (2014).

24. Ž. Zobenica, R. W. Van Der Heijden, M. Petruzzella, F. Pagliano, R.
Leijssen, T. Xia, L. Midolo, M. Cotrufo, Y. J. Cho, F. W. M. Van Otten,
E. Verhagen, and A. Fiore, “Integrated nano-opto-electro-mechanical
sensor for spectrometry and nanometrology,” Nat. Commun. 8, 2216
(2017).

25. X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-
resolution spectrometer based on a compact planar two dimensional
photonic crystal cavity array,” Appl. Phys. Lett. 100, 231104 (2012).

26. F. Yesilkoy, E. R. Arvelo, Y. Jahani, M. Liu, A. Tittl, V. Cevher, Y. Kivshar,
and H. Altug, “Ultrasensitive hyperspectral imaging and biodetec-
tion enabled by dielectric metasurfaces,” Nat. Photonics 13, 390–396
(2019).

27. A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D. Choi, D. N. Neshev, Y. S. Kivshar,
and H. Altug, “Imaging-based molecular barcoding with pixelated
dielectric metasurfaces,” Science 360, 1105–1109 (2018).

28. M. Faraji-Dana, E. Arbabi, H. Kwon, S. M. Kamali, A. Arbabi, J. G.
Bartholomew, and A. Faraon, “Hyperspectral imager with folded
metasurface optics,” ACS Photon. 6, 2161–2167 (2019).

29. J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,”
Nature 523, 67–70 (2015).

30. Z. Wang, S. Yi, A. Chen, M. Zhou, T. S. Luk, A. James, J. Nogan, W. Ross,
G. Joe, A. Shahsafi, K. X. Wang, M. A. Kats, and Z. Yu, “Single-shot on-
chip spectral sensors based on photonic crystal slabs,” Nat. Commun.
10, 1020 (2019).

31. Y. Zhu, X. Lei, K. X. Wang, and Z. Yu, “Compact CMOS spectral sensor
for the visible spectrum,” Photon. Res. 7, 961–966 (2019).

32. B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrom-
eter based on a disordered photonic chip,” Nat. Photonics 7, 746–751
(2013).

33. Z. Yang, T. Albrow-Owen, H. Cui, J. Alexander-Webber, F. Gu, X. Wang,
T. C. Wu, M. Zhuge, C. Williams, P. Wang, A. V. Zayats, W. Cai, L. Dai, S.
Hofmann, M. Overend, L. Tong, Q. Yang, Z. Sun, and T. Hasan, “Single-
nanowire spectrometers,” Science 365, 1017–1020 (2019).

34. U. Kurokawa, B. Il Choi, and C. C. Chang, “Filter-based miniature spec-
trometers: spectrum reconstruction using adaptive regularization,” IEEE
Sens. J. 11, 1556–1563 (2011).

35. P. Wang and R. Menon, “Computational spectrometer based on a broad-
band diffractive optic,” Opt. Express 22, 14575–14587 (2014).

36. D. Pohl, M. Reig Escalé, M. Madi, F. Kaufmann, P. Brotzer, A. Sergeyev,
B. Guldimann, P. Giaccari, E. Alberti, U. Meier, and R. Grange, “An
integrated broadband spectrometer on thin-film lithium niobate,” Nat.
Photonics 14, 24–29 (2020).

37. M. F. Duarte and Y. C. Eldar, “Structured compressed sensing: from
theory to applications,” IEEE Trans. Signal Process. 59, 4053–4085
(2011).

38. P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin,
“Recent advances in planar optics: from plasmonic to dielectric
metasurfaces,” Optica 4, 139–152 (2017).

39. H.-T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics
and applications,” Rep. Prog. Phys. 79, 076401 (2016).

40. C.-C. Chang, N.-T. Lin, U. Kurokawa, and B. Il Choi, “Spectrum
reconstruction for filter-array spectrum sensor from sparse template
selection,” Opt. Eng. 50, 114402 (2011).

41. J. Oliver, W. Lee, S. Park, and H.-N. Lee, “Improving resolution of minia-
ture spectrometers by exploiting sparse nature of signals,” Opt. Express
20, 2613–2625 (2012).

42. S. Zhang, Y. Dong, H. Fu, S.-L. Huang, and L. Zhang, “A spectral recon-
struction algorithm of miniature spectrometer based on sparse optimiza-
tion and dictionary learning,” Sensors 18, 644–659 (2018).

43. A. D. Broadbent, “A critical review of the development of the CIE1931
RGB color-matching functions,” Color Res. Appl. 29, 267–272
(2004).

44. E. J. van Kampen and W. G. Zijlstra, “Spectrophotometry of hemoglobin
and hemoglobin derivatives,”Advances in Clinical Chemistry 23,
199–257 (1983).

45. W. Bachir and O. Hamadah, “Second derivative diffuse reflectance
spectroscopy for estimating tissue hypoxia,” OSA Contin. 4, 650–664
(2021).

https://doi.org/10.1038/nphoton.2009.185
https://doi.org/10.1117/1.OE.52.9.090901
https://doi.org/10.1117/12.453791
https://doi.org/10.1117/12.628859
https://doi.org/10.1117/12.902420
https://doi.org/10.1126/science.272.5261.551
https://doi.org/10.1016/S0896-6273(03)00403-3
https://doi.org/10.1038/324361a0
https://doi.org/10.1038/nature08438
https://doi.org/10.1016/j.neuroimage.2010.09.036
https://doi.org/10.1016/S0165-0270(00)00180-1
https://doi.org/10.3389/neuro.01.001.2008
https://doi.org/10.1117/1.NPh.3.4.045003
https://doi.org/10.1117/12.513745
https://doi.org/10.1117/12.513745
https://doi.org/10.1364/AO.39.002210
https://doi.org/10.1117/1.602431
https://doi.org/10.1117/12.919271
https://doi.org/10.1117/12.7972819
https://doi.org/10.1117/12.777110
https://doi.org/10.1021/acssensors.6b00428
https://doi.org/10.1364/OE.16.011930
https://doi.org/10.1021/nn501765k
https://doi.org/10.1038/s41467-017-02392-5
https://doi.org/10.1063/1.4724177
https://doi.org/10.1038/s41566-019-0394-6
https://doi.org/10.1126/science.aas9768
https://doi.org/10.1021/acsphotonics.9b00744
https://doi.org/10.1038/nature14576
https://doi.org/10.1038/s41467-019-08994-5
https://doi.org/10.1364/PRJ.7.000961
https://doi.org/10.1038/nphoton.2013.190
https://doi.org/10.1126/science.aax8814
https://doi.org/10.1109/JSEN.2010.2103054
https://doi.org/10.1109/JSEN.2010.2103054
https://doi.org/10.1364/OE.22.014575
https://doi.org/10.1038/s41566-019-0529-9
https://doi.org/10.1038/s41566-019-0529-9
https://doi.org/10.1109/TSP.2011.2161982
https://doi.org/10.1364/OPTICA.4.000139
https://doi.org/10.1088/0034-4885/79/7/076401
https://doi.org/10.1117/1.3645086
https://doi.org/10.1364/OE.20.002613
https://doi.org/10.3390/s18020644
https://doi.org/10.1002/col.20020
https://doi.org/10.1016/S0065-2423(08)60401-1
https://doi.org/10.1364/OSAC.410807

