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Spectral imaging extends the concept of traditional color cameras to 
capture images across multiple spectral channels and has broad ap- 
plication prospects. Conventional spectral cameras based on scanning 
methods suffer from the drawbacks of low acquisition speed and large 
volume. On-chip computational spectral imaging based on metasur- 
face filters provides a promising scheme for portable applications, but 
endures long computation time due to point-by-point iterative spec- 
tral reconstruction and mosaic effect in the reconstructed spectral im- 
ages. In this study, on-chip rapid spectral imaging was demonstrated, 
which eliminated the mosaic effect in the spectral image by deep- 
learning-based spectral data cube reconstruction. The experimental 
results show that 4 orders of magnitude faster than the iterative spec- 
tral reconstruction were achieved, and the fidelity of the spectral re- 
construction for the standard color plate was over 99% for a standard 

color board. In particular, video-rate spectral imaging was demon- 
strated for moving objects and outdoor driving scenes with good per- 
formance for recognizing metamerism, where the concolorous sky and 

white cars can be distinguished via their spectra, showing great po- 
tential for autonomous driving and other practical applications in the 
field of intelligent perception. 
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INTRODUCTION 

Spectral imaging technology aims to capture spectral information for each
two-dimensional spatial point to form a spectral data cube. It has been ap-
plied in a broad range of fields such as remote sensing 1 , 2 , precision agri-
culture 3 , medical diagnostics 4 , 5 , food inspection 6 , environmental moni-
toring 7 , ar t conser vation 8 , 9 and astronomy 10 . Traditional spectral imagers
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rely on either spatial scanning, such as whiskbroom scanning 11 and push-
broom scanning 12 , or spectral scanning, such as filter wheels 13 and tunable
filters 14 , 15 . However, scanning methods suffer from low acquisition speed,
which is not applicable for dynamic recording of moving targets. To over-
come this limitation, snapshot spectral imaging methods 16 are explored.
Early snapshot techniques, such as integral field spectrometry 17-19 , multi-
spectral beam splitting 20 , and image-replicating imaging spectrometer 21 ,
still rely on light splitting, also the optical systems of which are bulky.
With the development of compressive sensing (CS) 22 , 23 , growing research
interests have been attracted by the computational snapshot spectral imag-
ing technique 24 , which can be categorized into three groups: coded aper-
ture, speckle-based and spectral filter array methods. For coded aperture
methods, the classical system is coded aperture snapshot spectral imager
(CASSI) 25-32 , which uses fixed masks and dispersive elements to imple-
ment band-wise modulation. CASSI is capable of capturing and recon-
structing the hyperspectral images rapidly with deep-learning techniques.
However, the complicated optical components lead to large system vol-
ume, which cannot meet the growing demand for portable applications.
Speckle-based methods 33-38 utilize the wavelength dependence of speckle
from a scattering media or diffractive optical element to achieve spectral
imaging. Although the systems can be compact, the spectral resolution is
limited by the speckle correlation through wavelengths. The spectral filter
array methods can be viewed as an extension of Bayer filters, which adopt
a super-pixel containing a group of spectral filters for spectral recovery.
Even though the methods of this class are endowed with the advantages
of compact device size and high spectral accuracy, there exist mosaic ef-
fect in the reconstructed spectral images, where the recovered spectra for
the edge points are inaccurate. Recently, our group demonstrated a snap-
shot spectral imaging chip based on metasurface-based spectral filter ar-
rays with the ultra-high center-wavelength accuracy of 0.04 nm and the
spectral resolution of 0.8 nm 

39 . Fur ther more, the spectral resolution was
improved to 0.5 nm when adopting metasurfaces with freeform shaped
meta-atoms in our latest work 40 . However, in addition to the Mosaic ef-
fect mentioned above, the classical iterative CS algorithm adopted in the
current work makes the computation time of data cube reconstruction still
remain very long, which limits its application in the mobile systems with
speed requirements, such as pilotless automobile. 

In the current work, on-chip mosaic-free rapid spectral imaging was
demonstrated by employing advanced deep-learning-empowered algo-
rithms developed for CASSI to the metasurface spectral imager reported
in our previous work 40 . The metasurface spectral imager produces dif-
ferent amplitude modulation patterns in different spectral bands, which
plays the role of a fixed mask plus a disperser in CASSI. Specifically,
the spectral imager was designed by integrating a metasurface layer com-
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Fig. 1 | a, Schematic representation of the metasurface-based spectral imager, which consists of a metasurface layer, a microlens layer and an image sensor layer. The 

silicon metasurface contains 360 × 440 metasurface units with freeform shaped meta-atoms. There are 400 types of metasurface units with distinctive transmission 

spectra. Typically, 5 × 5 metasurface units are combined to form a micro-spectrometer (spectral pixel). b, Two methods of data cube reconstruction from the measurement 

of the spectral imager in a including the point-by-point spectral reconstruction using iterative optimization algorithms, and fast reconstruction of the whole data cube via 

deep learning algorithms. c, Schematic diagram of coded aperture snapshot spectral imaging. The spectral data cube is first modulated by a fixed coded aperture (mask), 

then sheared by a disperser, and finally measured by a detector. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

posed of 360 × 440 metasurface units with freeform shaped meta-atoms
onto a CMOS image sensor (CIS). There are totally 400 kinds of meta-
surface units, each of which is of a distinctive spectral response function.
As a proof of principle, 256 × 256 metasurface units and 26 wavelength
bands were selected from 450 to 700 nm with a step of 10 nm. A deep
unfolding network based on the alternating direction method of multipli-
ers (ADMM) algorithm, which is called ADMM-net 41 , was adopted for
the fast reconstruction of spectral images. Here, the network was trained
on a synthetic dataset containing 750,000 spectral data cubes with the
size of 256 × 256 × 26, which are generated from the CAVE 

41 and
KAIST 

42 datasets. Besides, additive white Gaussian noise was imposed on
the measurements to mimic real-test cases. On-chip rapid spectral imag-
ing eliminating the mosaic effect was realized by applying the ADMM-net
to reconstruct the spectral data cube directly. Compared with the point-
by-point iterative spectral reconstruction, four orders of magnitude speed
improvement was achieved by the ADMM-net, which enables a spectral
data cube reconstruction rate of 55 per second, and the average spectral re-
construction fidelity exceeds 99% for a 24-patch Macbeth color checker.
In practice, video-rate spectral image reconstruction was demonstrated for
moving objects and outdoor driving scenes. It is found that the concolor-
ous sky and moving white cars can be effectively distinguished by their
spectra, while the existing driverless vehicles can easily mistake a white
truck for the sky and cause a crash. The approach adopted in the current
work is capable of solving the huge safety problem caused by the defect in
metamerism recognition for not only autonomous driving 43 but also other
fields of intelligent perception, and shows great potential for various ap-
plications. 

HARDWARE STRUCTURE 

The schematic of the metasurface-based spectral imager is shown in
Fig. 1 a, as reported in ref. 40 . A silicon metasurface layer was integrated
on the image sensor with a microlens layer. The metasurface layer was
composed of 360 × 440 metasurface units, which were obtained by ar-
ranging 20 × 20 kinds of metasurface units repeatedly 18 × 22 times.
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Different metasurface units exhibit distinctive transmission spectra. Each
metasurface unit is a periodic array with freeform shaped meta-atoms.
The periods and shapes of the corresponding 400 kinds of meta-atoms
were optimized to maximize the mutual differences of the transmission
spectra (see ref. 40 for details). Each metasurface unit represents a spatial
point, and light will be detected after being modulated by each unit. For
a certain point ( i, j ) , the spectrum of incident light can be reconstructed
from the N = ( 2 n + 1 ) 2 detected signals at the surrounding N points (that
is, ( i − n, j − n ) , ( i − n, j − n + 1 ) , . . . , ( i + n, j + n ) , typically, we set
n = 2 ). The spectral reconstruction was implemented by solving such a
system of linear equations: 
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Where, y [ i, j ] denotes the measured signal at the ( i, j ) point, M 

[ i, j ] 
k repre-

sents the modulation intensity (i.e., transmittance of the metasurface unit)
at the ( i, j ) point for the k -th spectral channel, x [ i, j ] 

k is the k -th element
of the target spectrum vector at the ( i, j ) point, N λ is the total number of
spectral channels. Since there are a total of 360 × 440 points, 158,400
groups of equations like Eq. (1) are needed to be solved to reconstruct
the spectra of all points to recover the whole spectral data cube, which
is time-consuming. For the iterative CS algorithm, it is assumed that the
spectra of incident light at the N points around ( i, j ) are the same with
those in Eq. (1) , which results in mosaic effect in the reconstructed spec-
tral images. In order to address the above problems, the deep-learning
algorithms 44 were proposed to be exploited for directly reconstructing the
data cube inspired by CASSI (see Supplement 1, S1 for details), as indi-
cated in Fig. 1 b. 

The basic principle of CASSI is presented in Fig. 1 c, where the spec-
tral data cube is spatially coded by a fixed physical mask (coded aperture),
and then spectrally sheared by a dispersive element, and finally measured
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Fig. 2 | a, Data flow graph of the ADMM-net with K stages, where each stage contains a linear projection W ( ·) denoting the computation in Eq. (4) and a CNN denoiser. 

b, Architecture of the U -net used in a for denoising. c, RGB images of 15 samples in the basic spectral image dataset. 
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by a detector. Therefore, for CASSI, a fixed mask and a disperser were
used to achieve different masks at different spectral channels. The fixed
mask can be traditional blocking-unblocking coded aperture 25 , 26 or col-
ored coded aperture 27-30 . In the current work, the metasurface layer was
adopted to achieve different masks at different wavelengths, and its math-
ematical model can be written as: 
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Where, x k = [ x [ 1 , 1 ] k x [ 2 , 1 ] k · · · x 
[ N x ,N y ] 
k 

] 
T 

denotes the k -th frame
of the spectral data cube, N x , N y represent the number of points along the
horizontal and vertical dimensions, respectively. When taking the mea-
surement noise into consideration, the Eq. (2) can be expressed in a vec-
torized formulation as follows: 

y = �x + e (3)

Where, y ∈ R 

N x N y is the compressed measurement, � ∈ R 

N x N y ×N x N y N λ is
the sensing matrix, x ∈ R 

N x N y N λ is the target signal and e ∈ R 

N x N y is the
measurement noise. As a proof of principle, 256 × 256 metasurface units
were selected for spectral imaging with 26 wavelengths from 450 nm to
700 nm (that is, N x = N y = 256 , N λ = 26 ). 

RECONSTRUCTION NETWORK 

In the current work, a deep unfolding network based on the ADMM algo-
rithm dubbed ADMM-net was employed for data cube reconstruction. The
framework of ADMM-net with K stages ( K = 12) is depicted in Fig. 2 a.
As in ref. 41 , let v denote an estimate of the desired signal, and by intro-
ducing two auxiliary variables x, u , the three steps for updating variables
in each stage are listed as follows: 

x ( k ) = 

[
�T � + γ ( k ) I 

]−1 [
�T y + 

(
v ( k−1 ) + u ( k−1 ) 

)]
(4)

v ( k ) = D k 

(
x ( k ) − u ( k−1 ) 

)
(5)

u ( k ) = u ( k−1 ) − (
x ( k ) − v ( k ) 

)
(6)
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Here, γ (k) > 0 is another auxiliary trainable parameter, I is an iden-
tity matrix, D k denotes a denoiser. Eq. (4) represents a linear projection.
Since � is a concatenation of N λ diagonal matrices, it can be seen that
��T is a diagonal matrix. Therefore, Eq. (4) can be solved efficiently
via element-wise operation instead of calculating the huge matrix inver-

sion as derived in ref. 45 . Eq. (5) is a denoising process performed by the
CNN, as shown in Fig. 2 a. A 15-layer U -net 46 was adopted as the denoiser,
and its architecture is described in Fig. 2 b, where the skip-connection can
be regarded as residual learning, which is shown to be necessary for the
denoiser 41 . 

A basic dataset containing 262 scenes with a size of 512 × 512 × 26
was constructed from the publicly available hyperspectral dataset CAVE
and KAIST (see Supplement 1, S2 for details). The RGB images of the se-
lected 15 scenes in the basic dataset, which are converted from the spectral
images via the International Commission on Illumination color-matching
function 48 , are shown in Fig. 2 c. For model training, 252 scenes were ran-
domly selected from the basic dataset, implementing data augmentation to
obtain 750,000 samples with the size of 256 × 256 × 26. The operations
of data augmentation include random cropping, rotation and multiplying
with the spectra of LED light or sunlight sources (see Supplement 1, S3
for details). The remaining 10 scenes were downsampled to the size of
256 × 256 × 26 for testing. In addition, the loss function is the root mean
square error between the ground truth and the output result of the net-
work. The network was trained by the Adam optimizer on Pytorch using
NVIDIA GeForce RTX 3080 GPUs. The total number of epochs is 300,
and the batch size was set to 4 due to the limitation of GPU memory. The
initial learning rate was set to 0.001, and scaled to 90% of the previous
one every 20 epochs. 

Firstly, network training and test were conducted under noisy con-
ditions. Since it takes a lot of time to acquire measured images for
real objects to train the network, the method of simulated measurement
 , 100045 (2023) 3 of 8 
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Fig. 3 | a-c , Reconstr uction results of simulated crayon and toy hyperspectral data under 2% and 4% noise levels, respectively. The original and reconstructed RGB 

images of the scenes are shown on the top row with a size of 256 × 256 pixels. The spectra of three selected points are shown on the bottom row, where the fidelity of the 

reconstructed spectra is shown in the legends. b-d, Reconstructed frames of simulated crayon and toy hyperspectral data under 2% and 4% noise levels, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

was adopted, that is, using the calculated measured images y through
Eq. (3) with pre-calibrated �, spectral images x in the dataset and suit-
able noise distribution e . Both x and y were normalized to [ 0 , 1 ] . It
is assumed that each element of the measurement noise vector e in
Eq. (3) follows an independent zero-mean Gaussian distribution 47 , that
is, e i ∼ N ( 0 , σ 2 

n ) . Here, the standard deviation σn represents the noise
level, and it is randomly chosen between 0 and 0.05 to increase the ro-
bustness to noise of different levels. The reconstruction results of two
test scenes under 2% and 4% noise levels are given in Fig. 3 . For the
crayon scene with 2% noise, it can be seen that the average fidelity of
the recovered spectra for the selected three points exceeds 99.97%, as in-
dicated in the legends of Fig. 3 a. When the noise level is increased to
4%, it can be seen that the ADMM-net can still recover the spectra re-
liably with an average fidelity of 99.87%. Here the fidelity is defined as
follows: 

F ( f 1 , f 2 ) = 〈 f 1 , f 2 〉 (7)

where f 1 , f 2 are the l 2 -nor malized g round tr uth and reconstr ucted result,
respectively, and 〈〉 represents the inner product. The four reconstructed
exemplar frames of the crayon hyperspectral data are shown in Fig. 3 b,
which are highly consistent with the ground truth under different noise
levels. For the toy scene, the ADMM-net can also provide accurate re-
constructed results, as shown in Figs. 3 c and 3 d. When the noise level is
increased from 2% to 4%, the spectral reconstruction quality is degraded
more seriously compared with the crayon scene since there are more fine
spatial details in Fig. 3 c, while the four frames in Fig. 3 d are still recovered
with high quality. 
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RAPID SPECTRAL IMAGING 

Then, the ADMM-net trained with noise was applied to reconstruct the
real data from snapshot measurements captured by the spectral imager, as
shown in Fig. 4 a. The metasurface layer with the size of 8 mm × 6.4 mm
was integrated on top of a CIS (Thorlabs, CS235MU). The spectral
imager is assembled with a 50 mm-length fixed focal lens (Thorlabs,
MVL50M23) for imaging. The recovered results for a standard 24-patch
Macbeth color checker are displayed in Fig. 4 b. In order to better show the
reconstr uction perfor mance, a commercial spectral camera (Dualix Instr u-
ments, GaiaField Pro-V10) based on line scanning was employed to cap-
ture the spectral image as a reference. Moreover, the results of ADMM-
net were compared with those obtained by traditional iterative algorithm
GAP-TV 

45 , end-to-end CNN λ-net 48 and point-by-point spectral recon-
struction using the iterative CS algorithm implemented by CVX 

48 , an
open-source package for convex optimization. For CVX method, 25 meta-
surface units ( N = 25 ) in Eq. (1) were adopted for spectral reonstruction
with 601 wavelength channels (from 450 to 750 nm with a step of 0.5 nm),
and then the result was downsampled to 26 channels (from 450 to 700 nm
with a step of 10 nm). The CVX method used l 1 -norm regularization based
on sparsity in the spectral transformation domain via dictionary learn-
ing. It can be clearly seen from Fig. 4 b that higher spectral reconstruction
accuracy is achieved by ADMM-net than other algorithms. For the se-
lected four points, the average fidelities of the reconstructed spectra using
ADMM-net, GAP-TV, λ-net and CVX are 99.53%, 97.18%, 97.72% and
97.32%, respectively. Besides, ADMM-net is also superior to the CVX in
spatial details, which eliminates the mosaic effect. Additional reconstruc-
tion results for a Thorlabs box are provided in Supplement 1, S4. 
 , 100045 (2023) 4 of 8 
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Fig. 4 | a, The spectral imager with a metasurface layer (8 × 6.4 mm 

2 ) integrated on a CMOS image sensor (Thorlabs, CS235MU) and a lens with fixed focal length 

(Thorlabs, MVL50M23) are used for spectral imaging. b, Reconstruction results of real hyperspectral data of a 24-patch Macbeth color chart. The reference RGB image 

captured by a commercial spectral camera (Dualix Instruments, GaiaField Pro-V10), the reconstructed RGB images using ADMM-net, GAP-TV, λ-net and CVX, are 

shown on the top row from left to right with a size of 256 × 256 pixels. The snapshot measurement and spectra of four selected points are shown on the bottom row, 

where the fidelity of the reconstructed spectra is shown in the legends. 

Table 1 | Comparison of different methods. 

Methods Line scanning ADMM-net GAP-TV λ-net CVX 

Data cube size 256 × 256 × 26 256 × 256 × 601 256 × 256 × 26 
Running time (s) ∼60 1.72 @CPU0.018 @GPU 110 @CPU 2.44 @CPU0.095 @GPU 7767 @CPU 4854 @CPU 

Running time per channel (s) ∼2.31 0.066 @CPU0.00069 @GPU 4.23 @CPU 0.094 @CPU0.0037 @GPU 12.9 @CPU 186.7 @CPU 

Fig. 5 | Reconstructed results of real hyperspectral data of a moving Thorlabs box. Snapshot measurements captured by the on-chip spectral imager are shown on the 

first row. The reconstructed RGB images are shown on the second row. The reconstructed spectral images at different wavelengths are shown on the third to sixth rows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition, the running time was compared using different methods
so as to obtain a spectral data cube, as displayed in Table 1 . For the com-
mercial spectral camera based on line scanning, it takes about 1 minute
to capture a data cube with a size of 256 × 256 × 26. For the compu-
tational methods, about 110 s are required for the GAP-TV to recover
the spectral data cube of size 256 × 256 × 26, since it is an iterative
method. The ADMM-net and λ-net spend It takes 1.72 and 2.44 s for
the ADMM-net and λ-net on CPU (Intel Xeon Gold 6226R), or 0.018
and 0.095 s on GPU (NVIDIA GeForce RTX 3080), respectively. The
CVX is the slowest, which takes 7767 and 4854 s for the spectral cube of
size 256 × 256 × 601 and 256 × 256 × 26, respectively. It is clear that
ADMM-net is the most efficient. The running time was divided by the
number of wavelength channels, as indicated in the last row of Table 1 . It
CHIP | VOL 2 | SUMMER 2023 Yang, J. et al. Chip 2
can be seen that the reconstruction speed of ADMM-net is over four orders
of magnitude faster than that of CVX, which enables 256 × 256 × 26 × 55
4D data cube reconstruction per second for rapid spectral imaging in real
applications. 

Video spectral imaging experiments were carried out to verify the ca-
pability of the proposed approach for high-speed spectral image recon-
struction. The first example was a moving Thorlabs box indoors with an
LED light source. The reconstructed hyperspectral video contains a total
of 200 frames (19.84 s), from which 10 frames are extracted and shown
in Fig. 5 . From the results of recovered RGB images and spectral images
at four wavelengths, it can be seen that the spatial, spectral and motion
details are reconstructed with high quality. The full video is provided in
the Supplement 2. 
 , 100045 (2023) 5 of 8 

https://doi.org/10.1016/j.chip.2023.100045


Research Article DOI: 10.1016/j.chip.2023.100045 

Fig. 6 | Reconstructed results of real hyperspectral data of an outdoor driving scene. Snapshot measurements captured by the on-chip spectral imager are shown on 

the first row. The reconstructed RGB images are shown on the second row. The reconstructed spectra of three selected points at different time frames are shown on the 

third row. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The second example is outdoor driving scene under the sunlight. The
reconstructed video contains 300 frames (8.38 s) with a shorter exposure
time, compared with the first example. That is, the approach employed
in the current work can support a refresh rate of about 2 data cubes per
meter for autonomous vehicles running at 60 km/h. Note that the refresh
rate contains both the capture and reconstruction process, while the afore-
mentioned 55 spectral data cube per second only takes the reconstruction
process into account. Fig. 6 shows the recovered RGB images and spec-
tral images at three wavelengths of the extracted 8 frames, as well as the
recovered spectra for the selected three points. It can be seen that the driv-
ing cars with different colors can be reconstructed with fine spatial details,
and the spectral characteristics are also recovered with high quality. In par-
ticular, from the spectra of points A and B in the frame 20 and 100, it can
be observed that there exist obvious differences between the spectra of
the sky and white car. Hence, the sky and white cars can be distinguished
adopting the approach, which is significant for autonomous driving with
the defect in metamerism recognition as a huge security concern 43 . The
full video of this example is provided in the Supplement 3. 

DISCUSSION 

There are still some aspects remain to be improved in the work. Firstly,
the wavelength sampling interval was set to 10 nm due to the limitation of
GPU memor y. Reconstr uction of spectral images with more wavelength
bands can be anticipated with improved computational power and GPU
memory. Secondly, the capacity of the training dataset is still insufficient.
Spectral image datasets with large scale, accuracy and diversity are re-
quired to improve the network performance. Thirdly, the structure of the
ADMM-net can be further improved in several aspects such as increas-
CHIP | VOL 2 | SUMMER 2023 Yang, J. et al. Chip 2
ing the number of stages, and using deeper and more advanced CNN de-
noisers. Besides, only Gaussian white noise was considered and employed
to simulate the real situations in the network training. A more complete
and accurate noise model which takes both Gaussian white noise and shot
noise into account is required for better performance. 

CONCLUSIONS 

In summary, a deep unfolding network called ADMM-net was proposed in
the manuscript and employed to fastly reconstruct the spectral image from
the snapshot measurement of the metasurface-based spectral imager. The
approach employed in the current work shows excellent performance in
both simulated and real data reconstruction. It is worth noting that, com-
pared with conventional point-by-point iterative spectral reconstruction,
the reconstruction speed was improved by four orders of magnitudein the
real experiment with high spectral accuracy and without mosaic effect.
Moreover,video-rate spectral imaging was also demonstrated for moving
objects and outdoor driving scenes with good performance of metamerism
recognition, in which the concolorous sky and white cars can be effec-
tively distinguished according to their spectra. The approach adopted in
the current work could provide real-time capture and reconstruction of
hyperspectral images, paving the way for autonomous driving and other
various real-time applications in the field of intelligent perception. 

METHODS 

The metasurface-based spectral imager was fabricated on a Silicon-On-
Insulator (SOI) wafer with a 220-nm silicon layer. Firstly, the metasurface
 , 100045 (2023) 6 of 8 
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patterns were defined via electron beam lithography (EBL) using ZEP re-
sist, and transferred onto the top silicon layer through reactive ion etch-
ing (RIE). Subsequently, the silicon dioxide under the patterned area was
removed through immersion in buffered hydrofluoric (HF) acid in a wa-
ter bath at the temperature of 40 °C, and maintained for approximately
3 min. Finally, the suspended silicon metasurface layer was peeled off and
transferred onto a CIS chip via a polydimethylsiloxane (PDMS) adhesion
layer. 
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