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The effect of Si-nanocrystal (Si-nc) size distribution on Raman spectrum is studied in detail within

the framework of a phonon confinement model. It is found that size distribution has little effect on

Raman frequency shift, but greatly affects the width and shape of Raman spectrum. Si-nc Raman

spectrum can be well explained by considering the size distribution. Furthermore, a set of simple

relationships between Raman frequency shift/full width at half maximum (FWHM) and size

distribution is set up based on the framework of a modified phonon confinement model, which can

be applied to calculate Si-nc size distribution from the Raman spectrum. VC 2011 American Institute
of Physics. [doi:10.1063/1.3569888]

I. INTRODUCTION

Si-nanocrystals (Si-nc) have attracted intense attention

in recent years due to many potential applications, such as

silicon-based light sources,1,2 biological labeling,3,4 and non-

volatile memory devices,5,6 among others. For all these

applications, clarifying the size distribution of Si-nc is very

important. Since the Raman spectrum was found to be

greatly affected by Si-nc size,7 it has been employed to

determine Si-nc size distribution by many authors.8,9 Com-

pared with other conventional methods, such as transmission

electron microscopy (TEM) and x-ray diffraction, Raman

scattering is much preferred for its nondestructive meas-

uring, small specimen quantity requirement, and short mea-

surement time.

The phonon confinement model (PCM),10 originally

proposed by Richter, Wang, and Ley (hereafter this original

model is referred to as the RWL model), has been widely

used to explain the Si-nc Raman spectrum11 and determine

their size distribution.8,9 However, the RWL model can only

serve as a qualitative analysis of the practical Raman fre-

quency shift.12 An improved model proposed by Faraci

et al.12 overcomes such a problem, but the Raman spectrum

width predicted by this model was far less than experimental

results. Moreover, the effect of Si-nc size distribution on the

Raman spectrum, which is critical to the application of Si-nc

size distribution calculation, was still not studied in detail.

In this paper, the effect of Si-nc size distribution on the

Raman spectrum is studied in detail with both the RWL

model and Faraci’s model. It is found that size distribution

has little effect on the Raman frequency shift, but greatly

affects the width and shape of the Raman spectrum. Consid-

ering the size distribution, Faraci’s model can well explain

both the Raman frequency shift and the full width at half

maximum (FWHM) while the RWL model can only explain

the FWHM. Based on the framework of Faraci’s model, a set

of simple relationships between Raman frequency shift/

FWHM and size distribution is set up and applied to calculate

Si-nc size distribution from the Raman scattering spectrum.

II. THEORY

According to the assumption of PCM,10 the phonon

wave function of a single Si-nc is the product of the wave

function in an infinite crystal and a weighting function W(r,

D), where D is the diameter of the Si-nc. W(r, D) describes

the Si-nc phonon confinement effect and usually forces pho-

non wave function to vanish beyond the Si-nc boundary. In

this paper, a sinc function

Wðr;DÞ ¼ sincð2r=DÞ; r � D=2

0; r > D=2

�
(1)

is used. It equals 0 just at the Si-nc boundary and could

describe the phonon confinement effect well.13

The Raman spectrum of a Si-nc with diameter D can

thus be written as14

Iðx;DÞ / ½nðxÞ þ 1�
ð jCðq;DÞj2

½x� xðqÞ�2 þ ðC0=2Þ2
d3q (2)

where n(x)þ 1 is the Bose–Einstein factor, C(q, D) is the

Fourier coefficients of W(r, D), C0 is the Raman natural line-

width of bulk Si, and x(q) is the corresponding phonon dis-

persion curve. In this paper, C0 is set as 3 cm�1 and x(q) is

expressed as

xðqrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5222 � 126100q2

r

jqrj þ 0:53

s
; (3)

which was proposed by Paillard14 based on the Brout sum,

and qr is the reduced phonon wave vector. There are other

phonon dispersion expressions proposed in publications and

some effects of applying different ones will be discussed in

Sec. III B1.

In the RWL model, all phonons in the Brillouin zone are

considered as Raman active. Thus the integral limits of

Eq. (2) are extended to the entire Brillouin zone. This
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assumption has been widely used to explain the Si-nc Raman

spectrum and calculate Si-nc size distribution, although it can

explain only the shift trend of the practical Raman frequency.

Faraci et al.12 made a different assumption in their improved

model to overcome such a problem. While the requirements

of energy and momentum conservation and the uncertainty

principle are considered, only phonons with wave vector in

the range [(2p�1)/D, (2pþ1)/D] should be treated as Raman

active. In this paper, the Si-nc size distribution effects on

Raman spectrum will be considered with both models.

Equation (2) can only represent the Raman spectrum of

Si-nc with uniform size. When the size distribution f(D) is

considered, the Raman spectrum can be written as9

IðxÞ /
ð

Iðx;DÞf ðDÞdD: (4)

Here, a lognormal function, which has been widely used for

practical samples, is adopted to describe Si-nc size

distribution

f ðDÞ / exp �ðlnðD=D0ÞÞ2

2r2

 !
(5)

where D0 is the most probable diameter and r is a parameter

used to describe the size distribution width.

III. RESULTS

With the theory outlined above, Raman scattering spec-

tra of Si-ncs with some different size distributions are calcu-

lated and summarized as follows.

A. Size distribution effects on Raman spectrum

Figures 1(a) and 1(b) are the representative results for

Si-ncs with D0 of 10 nm and 2 nm calculated with the RWL

model and Faraci’s model, respectively. Parameter r is

varied from 0–0.4 with a step of 0.1. r¼ 0 represents that all

Si-ncs are of uniform size, while r¼ 0.4 represents a rather

wide size distribution. It should be noted the FWHM of log-

normal distribution [Eq. (5)] is proportional to 2.35 D0r
approximately, so for r¼ 0.4, the FWHM nearly equals D0

itself.

With D0¼ 10 nm, the calculated Raman spectrum (for

both models) are almost unaffected by size distribution and

almost the same as the bulk Si Raman spectrum for all r val-

ues. This phenomenon is mainly due to the weak phonon

confinement effect of large Si-ncs. In contrast, with D0¼ 2

nm, the influence of the size distribution is significant. The

Raman spectrum broadens along with the increase of r,

which is more remarkable in Faraci’s model. Furthermore,

Faraci’s model predicts broadening on both sides of the

Raman spectrum while the RWL model predicts broadening

only on the left side. Besides the broadening of the Raman

spectrum, one should note a large Raman frequency shift for

Si-ncs with D0 of 2 nm. However, the size distribution (pa-

rameter r) has little effect on this frequency shift, especially

for the RWL model.

In order to get deeper insight into the phenomena

described above, the peak shift, FWHM, and shape of the

Raman spectrum of Si-ncs with D0¼ 1.5–10 nm and r¼ 0–

0.4 are calculated and summarized in Figs. 2, 3, and 4. For

each figure, parts (a) and (b) are results calculated with the

RWL model and with Faraci’s model, respectively. Some ex-

perimental data are also reprinted for comparison.9,14–16

Here, Raman frequency shift is defined as Dx¼x0 – xnc,

where x0 and xnc are the Raman frequency of bulk Si and

Si-ncs, respectively. In order to describe the asymmetrical

shape of the Raman spectrum, the low and high wavenum-

bers at half maximum (LWHM and HWHM in short) are

adopted in Fig. 4. These two values are read artificially from

Raman spectra on papers. With this definition, FWHM is

thus HWHM – LWHM.

As shown in Fig. 2, size distribution has little effect on

the calculated Raman frequency shift for both models. In

other words, the Raman frequency shift is mainly determined

by the Si-ncs with the most probable size D0 which denomi-

nate the samples in magnitude. In contrast, size distribution

greatly affects the width and the shape of the Raman spec-

trum (Figs. 3 and 4). This is reasonable because the number

of Si-ncs with different sizes increases along with the broad-

ening of size distribution and that leads to the increase of

Raman scattering frequency components. These phenomena

are more remarkable in Faraci’s model than in the RWL

model. That can be explained by the assumption of which

kind of phonons contributes to the Raman scattering process

in these two models. For Faraci’s model, only one kind of

phonons (with wave vectors around 2p/D) is Raman active,

while all phonons in the entire Brillouin zone are involved

for the RWL model. Along with the broadening of Si-nc size

distribution, the variation in kinds of wave vectors of

the Raman active phonons is more significant in Faraci’s

model, so Faraci’s model is more sensitive to Si-nc size

distribution.

The RWL model can explain FWHM no matter whether

size distribution is considered. Also, Faraci’s model can

FIG. 1. Calculated Raman spectra of Si-ncs with D0 of 10 nm and 2 nm

with RWL model (a) and Faraci’s model (b).

FIG. 2. Calculated Raman frequency shift with RWL model (a) and Faraci’s

model (b).
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explain not only FWHM well (Fig. 3, r¼ 0.2–0.3 for exam-

ple, and these values are consistent with those determined by

other methods, such as TEM.9,15) but also explains the fre-

quency shift when size distribution is considered. Therefore

Faraci’s model is preferred for explaining Si-nc Raman spec-

trum. In the following sections, only Faraci’s model will be

adopted for detailed discussion.

B. Analytic results based on Faraci’s model

In order to explain the experimental results of the Si-nc

Raman spectrum or to determine Si-nc size distribution, a

calculation or a fitting of a double integral combined with

Eqs. (2) and (4) usually is needed. However, this section will

show that there are analytic expressions for the Raman fre-

quency shift and FWHM based on the framework of Faraci’s

model with Si-nc size distribution. These expressions can

not only simplify the calculation process of Si-nc size distri-

bution, but also reveal the simple and clear relationships

between the Raman frequency shift/FWHM and Si-nc size

distribution.

1. Raman frequency shift

When Si-nc size distribution is not considered, the

Raman spectrum can be calculated with Eq. (2), where the

integral range is from (2p� 1)/D to (2pþ 1)/D. This integral

is a weighted summation of Raman spectra of phonons with

wave vector q. Each Raman spectrum has an identical Lor-

entzian shape with a central frequency of x(q) and width of

C0, and the corresponding weight factor is |C(q, D)|2q2. This

process is illustrated in Fig. 5 (Si-nc with D0¼ 2 nm). The

high dot-dash line is the final Raman spectrum and the low

lines are Raman spectra of single Raman active phonons

with weighted factors.

It can be seen that the Raman frequency is nearly equal

to that of the central Lorentzian curve, which corresponds to

the phonon with wave vector 2p/D. That is,

xncðDÞ ¼ xð2p=DÞ; (6)

where x(q) is the phonon dispersion curve of bulk Si.

The generality and validation of Eq. (6) can be under-

stood by following two factors. First, the weight factor |C(q,

D)|2q2 is nearly a constant in the integral range from

(2p� 1)/D to (2pþ 1)/D. As shown in Fig. 6(a) (axis x is

reduced as qD/2 to exclude the effect of size D), the variation

is less than 15% compared with their average value. Thus,

the final Raman spectrum can be regarded as a simple sum-

mation of the Lorentzian curves. Second, the central frequen-

cies of these Lorentzian curves x(q) are nearly symmetrical

compared with the central one in the whole integral range,

which would make the final Raman frequency almost equal

to that of the central one. The symmetry can be understood

by the phonon dispersion relation of bulk Si. Figure 6(b) is

the typical phonon dispersion curve where the x axis is the

reduced phonon wave vector qr¼ q/(2p/a) and a¼ 0.543 nm

is the lattice parameter of Si. The key point is that the inte-

gral range a/(pD) is narrow in Faraci’s model. For example,

a/(pD) are 0.085 and 0.017 for D of 2 nm and 10 nm, respec-

tively. Within such a narrow range, the dispersion curve

x(q) could be treated as linear. Thus the central frequency of

the Lorentzian curve in Eq. (2) shifts linearly along with

wave vector q.

As a result, the Raman frequency shift of Si-nc with di-

ameter D can be written as

DxðDÞ ¼ x0 � xð2p=DÞ; (7)

where x0 is the Raman frequency of bulk Si. By applying

the dispersion curve of Eq. (3) into Eq. (7), the Raman fre-

quency shift could be expressed as

FIG. 3. Calculated FWHM of Raman spectrum with RWL model (a) and

Faraci’s model (b).

FIG. 4. Calculated LWHM and HWHM of Raman spectrum with RWL

model (a) and Faraci’s model (b). Solid points and hollow points are the

LWHM and HWHM of experimental results, respectively.

FIG. 5. The weighted summation of integration of Eq. (2). The lower dot-

dash line is the Lorentzian curves in the center of integral range.

FIG. 6. (a) The normalized weighted factor |C(q, D)|2q2, (b) the typical pho-

non dispersion curve of bulk Si.
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DxðDÞ ¼ 120:8

a=Dþ 0:53
� ða=DÞ2: (8)

Figure 7 shows the results of the Raman frequency shift cal-

culated with the integral formula of Eq. (2) and the analytic

formula of Eq. (8). It can be seen that the difference is

negligible.

With the bond-polarizability model,17 it has been pro-

posed that the Raman frequency shift could be expressed as

DxðDÞ ¼ Aða=DÞc: (9)

One could find that Eqs. (8) and (9) are very similar. In fact,

an identical form of x(D)¼ 0.2 x0(a/D)2 could be deduced

by choosing the phonon dispersion relationship form9 of

x(qr)¼x0(1� 0.20qr
2). So these two different models may

come to the same conclusion.

When Si-nc size distribution is considered, the Raman

frequency shift almost remains the same, as shown in Sec.

III A. Thus, the Raman frequency shift of Si-nc can always

be written as Eq. (7) in Faraci’s model.

2. Raman spectrum FWHM

As with the Raman frequency shift, there is an analytic

approximation of the Raman spectrum FWHM. Because only

one kind of phonon (wave vector around 2p/D) is Raman

active for Si-nc with a given size, the FWHM of the final

Raman spectrum can be regarded as a coupling of two parts.

One is the intrinsic width due to the given size and the other

one is the width due to size distribution. Two critical sizes at

which the size distribution value falls to half maximum are

D1;2 ¼ D0 expð6
ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2
p

rÞ: (10)

The broadening of Si-nc Raman spectrum due to size distri-

bution could be approximately regarded as the difference of

Raman frequencies of Si-nc with these two critical sizes. By

expanding dispersion curve to the second order term

x(qr)¼x0þ qr
2dx2/dqr

2 (the first order term is neglectable

as the form given by9), these two corresponding frequencies

are

xðD1;2Þ ¼ x0 þ
dx2

dq2
r

a

D0

� �2

expð62
ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2
p

rÞ (11)

where (a/D0)2dx2/dqr
2 is just the approximation of Raman

frequency shift Dx(D0). Thus, the FWHM can be written as

X � jxðD1Þ � xðD2Þj � DxðD0Þ � 4
ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2
p

rþ C0; (12)

where C0 is the natural linewidth of the bulk Si Raman spec-

trum, and it is attached artificially in Eq. (12) to compensate

for the intrinsic width of the Si-nc Raman spectrum.

Figure 8 shows the results of Raman FWHM calculated

with the integral formula of Eq. (4) (small dots) and the ana-

lytic formula of Eq. (12) (solid lines), where r is 0.1, 0.2,

0.3, and 0.4. It can be seen that the difference between them

is negligible. In our calculation, we find that Eq. (12) fails

while r is very small (e.g., r¼ 0 leads to X¼C0). The rea-

son is that the intrinsic width of the Si-nc Raman spectrum

dominates in such cases. However, as shown in Fig. 8, the

analytic result is very precise while r is larger than 0.1.

As shown by Eq. (12), the increase of the Raman spec-

trum FWHM is simply proportional to the width of the size

distribution and the Raman frequency shift.

C. Determining Si-nc size distribution with the Raman
spectrum

The analytic results we obtained establish a set of simple

and clear relationships between the Raman frequency shift/

FWHM and Si-nc size distribution. An important application

of these results is to calculate Si-nc size distribution with the

Raman spectrum.

With Eqs. (7) and (12), when the Raman frequency shift

Dx and FWHM X of samples are obtained from experi-

ments, the parameters D0 and r of Si-nc size distribution

then can be calculated as

D0 ¼ a=x�1ðx0 � DxÞ
r ¼ X�C0

4
ffiffiffiffiffiffiffiffi
2 ln 2
p

Dx

(
; (13)

where a is the lattice parameter of bulk Si, x0 is its Raman

frequency, C0 is its Raman natural linewidth and x�1(�) is

the inverse function of its phonon dispersion curve. While

the dispersion curve is given by Eq. (3), x�1(�) is given by

FIG. 7. Calculated Raman frequency shift with integration of Eq. (2) and

analytic formula of Eq. (8).

FIG. 8. Calculated FWHM of Raman spectrum with full integration of Eq.

(4) and analytic formula of Eq. (12).
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x�1ðxncÞ ¼ qr ¼
ð5222 � x2

ncÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð5222 � x2

ncÞ
2 þ 267332ð5222 � x2

ncÞ
q

252200
: (14)

When the dispersion curve9 is x(qr)¼x0(1�0.20qr
2), x�1(�)

can be simple:

x�1ðxncÞ ¼ qr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 1� xnc=x0ð Þ

p
: (15)

From Eq. (13), it can be seen that D0 is only determined by

the Raman frequency shift, and r is determined by both the

Raman frequency shift and FWHM. Therefore the size distri-

bution of Si-nc can be easily calculated with Raman mea-

surement. The validation of Eq. (13) can be experimentally

verified by other measurement methods, such as TEM, and

related work is ongoing.

IV. DISCUSSION

It can be seen that PCM can be used to explain the Si-nc

Raman spectrum well when size distribution is considered.

However, there are still some differences between the theo-

retical results and experiments, which can be seen clearly in

Figs. 2, 3, and 4.

For example, the predicted Raman frequency shift is

slightly lower than that in the experimental data. As we have

shown, such deviation cannot be explained by the size distri-

bution. One possible reason is that the real phonon confine-

ment effect of Si-nc is stronger than the assumption. The

phonon wave function could vanish before it reaches the

boundary of Si-nc. Stronger phonon confinement leads to a

larger shift of Raman frequency. Other influencing factors

may be the surface phonon scattering (especially for the

small size Si-nc) and the temperature effect of Raman scat-

tering. In order to include the surface effect in the framework

of PCM, a possible method is replacing the bulk Si phonon

dispersion curve with a modified one since the dispersion

curve directly determines the Raman frequency shift, as

shown in Sec. III B 1.

Besides the phonon confinement and surface effect, an

important factor that can lead to spectrum broadening is

amorphous Si-ncs in samples. It has been well known that

amorphous Si has a very wide Raman spectrum and small Si-

ncs may hardly crystallize even at high temperatures. These

small and amorphous Si-ncs can be critical in applications

since they show high luminescence efficiency and can influ-

ence the growth dynamics of Si-ncs. As shown in Fig. 4,

LWHM, which can be strongly influenced by small Si-ncs

and amorphous Si, deviates from experimental results signifi-

cantly. By including the effect of amorphous Si-ncs, the

shape of the Raman spectrum may be explained much better.

V. CONCLUSION

In conclusion, the effect of Si-nc size distribution on

Raman spectrum is studied in detail with the RWL model

and Faraci’s model. It is found that size distribution has little

effect on the Raman frequency shift, but greatly affects the

width and shape of the Raman spectrum. When considering

the size distribution, Faraci’s model is preferable for explain-

ing the Si-nc Raman spectrum, including both frequency

shift and FWHM. Based on the framework of this model, a

set of simple and analytic relationships between Raman fre-

quency shift/FWHM and size distribution is set up, which

may simplify the calculation of Si-nc size distribution. It is

also found that the Raman frequency shift is related to the

dispersion curve of bulk Si, and the increase of the Raman

spectrum FWHM is proportional to the width of the size dis-

tribution and the Raman frequency shift.
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