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Modern face recognition systems usually combine RGB, depth, and infrared cameras to do face antispoofing, but they
are still not robust enough to unknown 3D high-quality mask attack. In our work, we developed a snapshot hyperspec-
tral image sensor based on metasurface nanostructures to obtain the high-precision hyperspectral information of the
detected face, and we built a practical antispoofing face recognition system using our new sensor. Experiments show that
our sensor can reconstruct the reflectance spectrum of human skin, and this spectral information captured by our sensor
can be quite effective and robust to identify spoof faces. We attack our system with several types of spoof faces, and our
system reaches 97.98% accuracy in real-world testing scenes. © 2022 Optica Publishing Group under the terms of the Optica

Open Access Publishing Agreement

https://doi.org/10.1364/OPTICA.469653

1. INTRODUCTION

Facial recognition is a biometric identity authentication method.
Unlike traditional passwords, biometric properties cannot be
forgotten or stolen, thus providing better security [1]. But one
can still display a printed photo or wear a mask to attack the face
recognition system [2]. To defend against these attacks, some
systems use technics to acquire 3D images of the face and do 3D
face recognition [3,4]. Some systems do video analysis to identify
fake faces [5,6]. Some systems use algorithms to do anomaly detec-
tion in RGB images and detect fake faces [7]. However, with the
development of 3D printing and biomimetic silicone technology,
some 3D disguise masks can look so real that even human eyes
can be deceived [8]. These 3D masks bring a great challenge to
current face recognition systems [9,10]. Moreover, current face
antispoofing (FAS) algorithms based on RGB, RGBD, or NIR
images usually perform badly on interdata set evaluations [11].
This domain adaptation problem makes the performance of FAS
systems deployed in the real world unpredictable. Therefore,
besides using these common cameras, some FAS methods try to
capture more robust and discriminating features between real and
fake faces using advanced sensors, such as SWIR [12], thermal
cameras [13], light-field cameras [14], and polarized cameras [15].
But these sensors are either too expensive, too large, or not conven-
ient to use, which makes them less practical to be integrated into
real-world face recognition systems [16].

Spectrum analysis is an effective tool to identify different mate-
rials. Because of the absorption of hemoglobin in human blood,
the reflectance spectrums of human skin [17] have two minimum
points, at 545 and 575 nm (see Fig. S1 in Supplement 1), which

is hardly imitable using masks. FAS approaches based on hyper-
spectral images (HSIs) are most effective and reliable [18,19] and
are more robust than approaches based on RGB cameras [20,21].
But traditional hyperspectral cameras rely on optics grating and
mechanical scanning systems. They are usually expensive, bulky,
and cost a lot of time to capture one HSI. Hence, like the other
advanced sensors mentioned above, they are also impractical in
real-world use. And there are few public FAS data sets based on
HSIs [22]. In recent years, on-chip spectral imaging sensor tech-
nology has been developed rapidly. Using silicon metasurfaces and
computational imaging technics, an on-chip snapshot HSI sensor
can be achieved [23,24], which can capture HSI data at a video rate
and may bring hyperspectral sensing into everyday life.

In our work, we adopted the on-chip snapshot HSI technics
to build a hyperspectral image sensor and designed a novel FAS
system. Compared with existing FAS works, our anti-spoofing
face recognition system is based on hyperspectral information.
Our work is the first (we believe) to build a practical antispoofing
face recognition system using an integrated hyperspectral sensor.
It can effectively detect almost all kinds of spoofing attacks using
spectrum analysis and is reliable to unknown attacks in the real
world. Compared with the traditional hyperspectral imager, our
on-chip hyperspectral image sensor is much cheaper, faster, and
smaller (see Fig. S2 and Table S1 in Supplement 1). As a traditional
hyperspectral camera needs over 100 s to scan one HSI, our sen-
sor only needs a 50-ms snapshot. It can measure the reflectance
spectrum of faces at high accuracy and reveal the absorption peaks
of hemoglobin. And it can be easily integrated into existing face
recognition systems.
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2. RESULTS

A. Hyperspectral Image Sensor

We designed and fabricated a snapshot hyperspectral image
sensor to obtain hyperspectral information about the captured
object. The overall architecture of our FAS system is shown in
Fig. 1. Resonant metasurface structures can be used to frequency-
modulate incident light [25]. By integrating the metasurface
structures on top of a CMOS image sensor (CIS), the intensity
of the modulated light is measured by CIS. Combined with a
spectrum reconstruct algorithm, the one-shot HSI can be real-
ized [23,26]. The HIS device consists of tens of thousands of
microspectrometers. Each microspectrometer is achieved by com-
bining metasurface units with CIS. For a single microspectrometer,
assuming that the spectrum of the incident light is F (λ), N meta-
surface units of transmission response Hi (λ), i = 1, 2, 3, . . . , N
are attached to the surface of the CIS. The absorption response
of the CIS imaging system is T(λ). Then, the signal intensity Ii

received by the CIS with the i th metasurface can be described as

Ii =

∫
F (λ)Hi (λ)T(λ)dλ. (1)

In the discrete form, Ii can be described as

Ii =
∑
λ

f (λ)h i (λ)t(λ), (2)

where f (λ), h i (λ), t(λ) is the discrete sampling of F (λ), Hi (λ),

T(λ). h i (λ) and t(λ) can be measured through experiment. Let
r i (λ)= h i (λ)t(λ); then we get

Ii =
∑
λ

f (λ)r i (λ). (3)

For N metasurface units, Ii , i = 1, 2, 3, . . . , N are measured
independently. Therefore, I = (I1, I2, . . . , IN)

T
∈ R N×1 can be

described in the matrix form,

I = R f , (4)

where f = ( f (λ1), f (λ2), . . . , f (λM))
T
∈ R M×1 and

R = (r1(λ), r2(λ), . . . , r N(λ))
T
∈ R N×M .

In our work, we sampled F (λ), Hi (λ), T(λ) from 450
to 750 nm at an interval of 0.5 nm; thus M = 601. And 49

metasurface units arranged in a 7× 7 array are used as a single
spectrometer; thus, N = 49. In order to improve the performance
of the metasurface-based hyperspectral image sensor, we chose
49 different metasurface units from the database to optimize the
column correlation of matrix R . As N is much smaller than M, in
practice, a compressive sensing (CS) algorithm is used to recon-
struct f ; we adopted the following convex optimization method to
solve the CS problem:

min
y
{||R Dy − I ||22 + α||y ||1}, f = Dy , (5)

where D is the sparse dictionary trained using a spectrum database
[27] and a K-SVD [28] algorithm according to [29]. α is the
weights of l1-norm regularization.

We adopted the freeform-shaped meta-atoms method [30]
to generate and optimize metasurfaces, thus reducing the col-
umn correlation of R (more details can be found in Algorithm
S1 in Supplement 1). By arranging the microspectrometers in a
2D array, a hyperspectral facial imaging device can be achieved.
Combined with the spectrum reconstruction algorithm, the
snap-shot hyperspectral image sensor can be realized (see Fig. 2).

First, we tested the performance of our hyperspectral image sen-
sor. We used our sensor to capture and reconstruct the reflectance
spectrum of a live face and some spoof faces. The results are shown
in Fig. 3. The images are captured under white LED lighting. In
Fig. 3, blue curves represent the data acquired from GaiaField
Pro-V10 [31] commercial hyperspectral camera. They are consid-
ered as the reference for comparison. Orange curves represent the
spectrums reconstructed by our sensor. Figure 3 shows that our
HSI sensor can measure the reflectance spectrum at a relatively
high accuracy. Cosine similarity between the reconstructed spec-
trum and the reference is adopted to quantify the performance
of our sensor. And, on the four test samples, which are a live face
[Fig. 3(a)], a paper mask [Fig. 3(b)], a silicone mask [Fig. 3(c)],
and raw silicone material [Fig. 3(d)], respectively, the cosine simi-
larities are 99.25%, 99.76%, 99.80%, and 99.68%. Moreover,
the commercial HSI camera needs more than 100 s to capture
one image, while our sensor only needs a snapshot within 50 ms.
Figure 3(a) shows that there are two hemoglobin characteristic
absorption peaks, at 545 and 575 nm, in the live face test sample
(more quantitative analysis can be found in Fig. S5 in Supplement
1). These two valleys at around 545 and 575 nm are labeled as A1

Fig. 1. Overall architecture of our proposed method.
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Fig. 2. Structure of the designed HSI image sensor. (a) Fabricated HSI image sensor; (b) a metasurface supercell is attached to the surface of the CIS. (c) A
microspectrometer consists of N different metasurface units, and the metasurface supercell consists of more than 40,000 microspectrometers. (d) The trans-
mission responses of different metasurface units are designed to have a minimum correlation.

Fig. 3. Spectrum measure results of our sensor. (a) Live face; (b) paper mask; (c) silicone mask; (d) raw silicone material.

and A2 in Fig. 3(a). The reflectance spectrum curve is W-shaped
at around 520–600 nm, which is the unique feature of human
skin reflectance spectrum. And the reconstructed spectrums of
spoof faces [Figs. 3(b)–3(d)] do not have this specific charac-
teristic, which indicates that our HSI sensor is capable of doing
antispoofing face recognition. More results about the recon-
structed spectrums of spoof and live faces under different lighting
conditions can be found in Fig. S3 in Supplement 1.

B. Face Antispoofing

Our hyperspectral face image camera can measure the spectrum
of the visible band (450∼ 750 nm). Considering that the charac-
teristics of human skin reflectance spectrum are at about 545 and
575 nm, we used the spectral range of 500∼ 650 nm to do FAS.
And we adopted the mean-blur method to denoise, thus reducing
the positive distortion of the reconstructed spectrums. That is,
to get the spectrum of a certain key point, the spectrums of nine
nearby pixels are reconstructed and averaged. For each spectrum
sample, the vector is normalized to a mean of 0 and a variance of 1.
We designed a FAS classifier based on transformer [32] (see Fig. 4)

and used our own hyperspectral FAS data set (see Algorithm S2
in Supplement 1) to train and evaluate the classifier. The detailed
specification of our network architecture and training procedure
can be found in Algorithm S3 in Supplement 1.

Figure 5 shows two samples from the testing set. The upper
one is a live face and the lower one is a screen-displayed face. From
the images taken by RGB camera [Figs. 5(a) and 5(b)], live and
spoof faces are hard to distinguish. However, using hyperspectral
information, the spoof face can be easily detected [Figs. 5(g) and
5(h)]. Spectral analysis makes antispoofing live skin segmentation
possible. After training, we evaluated the FAS classifier on the
testing set; the receiver operating characteristic (ROC) curve and
confusion matrix are shown in Fig. 6. We employed several metrics
to evaluate our model, such as accuracy, area under curve (AUC),
false rejection rate (FRR), and false acceptance rate (FAR). AUC
is the area under the ROC curve. It is one of the common metrics
used to evaluate the performance of a binary classifier. We regard
live faces as positives and spoof faces as negatives. Then FRR rep-
resents the proportion of live faces misclassified as spoof faces, and
FAR represents the proportion of spoof faces misclassified as live
faces. Our method reaches 98.75% AUC and 95.42% accuracy.
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Fig. 4. Architecture of the FAS classifier. For each input, there are 32 spectrum sample vectors. By adopting the self-attention mechanism using
Transformer Encoder, not only are the features of each spectrum sample analyzed respectively, but also the cross-correlations of 32 samples are taken into
account. Finally, the output vector by Transformer Encoder is sent to a multilayer perceptron (MLP) to get the final FAS results. More detailed information
about the network can be found in Algorithm S3.

Fig. 5. Which one is real? (a), (b) Images taken by an RGB camera; (c), (d) output of raw images of our sensor; (e), (f ) reconstructed HSIs; (g), (h) pixel-
level liveness detection results by FAS classifier. Bright yellow pixels indicate the area where live skin is detected.

Fig. 6. Testing results of FAS classifier. (a) ROC curve of the testing
results. Our classifier achieves an AUC of 98.75%, which indicates that
the classifier performs well on the FAS task. (b) Confusion matrix of the
testing results; the accuracy of our classifier is 95.42%. Only 2.1% of the
spoof faces are misclassified to the live face.

The FRR is 12.70%, and the FAR is only 2.10%, which means that
only 2.10% of the spoof faces are misclassified as live faces. Further
analysis shows that the performance of the spectrum measurement
has a greater impact on the results than the FAS classification
algorithm. Measurement noise may distort the reconstructed
spectrum, which results in a relatively high FRR. In addition,
we utilized a randomly points sampling method to generate the
data set, which resulted in a certain number of noisy samples and
reduced FRR. By improving the fabrication of the image sensor
and the spectrum reconstruction algorithm, the FAS performance
can be further improved.

C. Study of Cross-Domain Evaluation

In the intradomain evaluation, both the training data and the
testing data are taken under sunlight and LED light. The results
are shown as Exp. 1 in Table 1. Then, to test the robustness of
our method, we did some studies of cross-domain evaluation. As
the spectrum of the light source may have an effect on the reflec-
tion spectrum measurement, we trained and evaluated our FAS
method on HSIs taken under different light sources. In Exp. 2,
we trained the network on the data taken under LED light and
tested the network on the data taken under sunlight. As data taken
under sunlight were completely unseen to the network during
the training procedure, the testing accuracy and AUC dropped a
little. These results show that the light source does have a certain
effect on FAS performance, especially on FRR. If the classifier is
trained and evaluated on HSIs taken under different light sources,
the FRR could be relatively high. In Exp. 3, both the training data
and testing data are obtained only under sunlight. Therefore, the
network is trained and evaluated specially for a sunlight situation.
In this experiment, the accuracy and AUC both improved slightly,

Table 1. Cross-Domain Evaluation Results

Training Data Testing Data Acc. AUC FRR FAR
Sun LED Sun LED (%) (%) (%) (%)

Exp. 1 √ √ √ √ 95.42 98.75 12.70 2.10
Exp. 2 √ √ 88.95 92.77 24.21 5.77
Exp. 3 √ √ 96.37 98.65 6.07 2.64
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and the FRR dropped dramatically. The results demonstrate that if
the classifier is trained and evaluated on HSIs taken under the same
light source, the FRR would be much lower. Therefore, if the light
conditions of the deployment site are known, we can train the
network focused on the data taken under the certain light source,
and the performance of our FAS method can be further improved.

D. Antispoofing Face Recognition System

To build a practical real-time antispoofing face recognition system,
we only use spectrums from 32 face key points to do FAS. On the
one hand, it is unnecessary to use spectral information of every
pixel to do FAS. On the other hand, more key points mean more
spectrums need to be reconstructed, which increases the compu-
tation and data storage cost. Therefore, we used only 32 face key
points to build an antispoofing face recognition demo. Certainly,
in real-world applications, the number of key points can be chosen
appropriately. More key points bring better FAS performance, thus
providing better security for the face recognition system.

As is shown in Fig. 1, face recognition and face detection are
done on the output raw gray-scale image of the sensor directly.
And face key points are located using face alignment results (see
Algorithm S4 in Supplement 1). Then the spectrums of 32 key
points are reconstructed and sent to the FAS classifier. Finally, the
face recognition and antispoofing results are output by the system.
We deployed our sensor in the real world and recorded videos of
live and spoof faces under a variety of illuminations, including
sunlight and LED light. A total of 1637 valid frames of 20 different

identities were recorded, of which 428 were of live faces and 1209
were of spoof faces. Our system got 100% accuracy on face recog-
nition and 97.98% accuracy on face antispoofing, and we reached
0% and 7.71% on FAR and FRR. Some testing results are shown in
Fig. 7.

3. DISCUSSION

FAS has been a challenging task for all the current face recognition
systems. In our work, we proposed a novel FAS method in the
combination of software and hardware. A snapshot hyperspectral
image sensor is designed and fabricated to get the hyperspectral
information of the captured face. Face detection and recognition
are done on the raw output image of our sensor. Then, the spec-
trums of the face key points are reconstructed, and FAS is done
by analyzing the spectrum information. Compared with existing
work, our method introduced hyperspectral information to the
face recognition system using only a snapshot, which is more
robust and reliable than other unknown spoofing attacks. And
our sensor is based on CMOS-compatible metasurface units.
Fabricating the metasurface units on the surface of CIS is all we
need to build such a hyperspectral sensor. It is cheaper and faster
than traditional hyperspectral cameras. It can be integrated into
any existing face recognition devices or mobile phones very eas-
ily. And by combining our sensor and algorithm with an RGB
camera, a depth camera, or other cameras, we can even build a
stronger antispoofing face recognition system. It is very practical in

Fig. 7. Real-world antispoofing recognition results. (a) Results for a live face captured under sunlight; (b) results for a silicone mask captured under sun-
light; (c) results for a face displayed on the screen; (d) results for a high-quality 3D resin mask captured under LED light; (e) results for a paper mask captured
under sunlight; (f ) results for a live face captured under LED light.

https://doi.org/10.6084/m9.figshare.21207143
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real-world deployment. Furthermore, using the same strategy, an
antispoofing device can also be designed for other biometric-based
identity authentication systems, such as fingerprint recognition
and palm-print recognition.

The system we implemented takes full advantage of the
snapshot miniature HSI technology, which brings real-time
hyperspectral sensing into small devices and mobile devices.
Furthermore, using CMOS fabrication, on-chip integrated
metasurface units, and CIS, we can achieve mass production.
Noniterative algorithms such as deep neural networks can also be
adopted to boost the spectrum reconstruction procedure. Our
solution is expected to be widely used in real-world applications.

4. MATERIALS AND METHODS

A. Device Fabrication

The nanostructure of the designed metasurface is fabricated on
a 220 nm thick silicon-on-insulator (SOI) using electron beam
lithography (EBL) and inductively coupled plasma (ICP). Then
buffered hydrofluoric is used to corrode the silicon-dioxide layer
under the SOI. Finally, the metasurface is transferred and attached
to the surface of the CIS using polydimethylsiloxane (PMDS). We
used Thorlabs CS235MU monochrome camera as our CIS.

B. Face Detection and Recognition

At least two steps are needed for a regular face recognition system:
face detection and face recognition. Using deep-learning algo-
rithms, there are several efficient and reliable approaches to do face
detection [33,34] and face recognition [35,36]. As face alignment
is necessary for the following FAS procedure, we adopted multi-
task convolutional neural network (MTCNN) [37] to do face
detection and face alignment. MTCNN is a lightweight convolu-
tional neural network (CNN) with three stages. It can do joint face
detection and alignment at high computational efficiency. As for
face recognition, we trained ResNet [38] with ArcFace [39] loss to
embed face images. The face detection and recognition networks
are first trained on WiderFace [40] and MS1M [41] data sets and
then fine-tuned on the images captured by our sensor. Finally, the
trained algorithms are performed on the raw gray-scale images are
produced by our image sensor.
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