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Abstract: The free electron spin dynamics in Kapitza–

Dirac (KD) effect had been studied theoretically in one-

dimensional standing wave of EUV to X-ray laser with

extremely high intensity, which is far beyond experimen-

tal realization. Here, we propose to achieve the free elec-

tron spin-dependent KD effect in two-dimensional triangu-

lar optical lattice with spatial inversion symmetry breaking,

and the theoretical results reveal that laserwithwavelength

in visible or near-IR and five orders ofmagnitude decreased

intensity could lead to obvious spin-dependent KD effect.

This work provides the way to realize the free electron spin-

dependent KD effect experimentally.

Keywords: free electron; spin-dependent Kapitza-Dirac

effect; triangular optical lattice; spatial inversion symmetry

breaking

1 Introduction

The interaction between light and free electrons has

received widespread attention. Different from the conven-

tional free electron radiation and free electron acceleration

by light, the quantum properties of free electrons have been

gradually revealed in near-field optics and in free space.
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As interacting with the optical near-field, the free elec-

tron wavefunction [1]–[6] and photon states [7]–[9] can be

manipulated and shapedbased on the photon-inducednear-

field electron microscopy (PINEM) effect [10], [11]. While

interactingwith the photons in free space, the free electrons

can be scattered elastically or inelastically by photonswhich

is known as Compton scattering and gives rise to research

on Compton imaging [12], [13], high-energy photon emission

source [14]–[16], and so on. Stimulated Compton scatter-

ing has also been studied due to the enhanced interaction

strength of electrons and photons in free space [17]–[20].

As a kind of stimulated Compton scattering, the

Kapitza–Dirac (KD) effect shows transverse momentum

modulation of free electron by absorbing and emitting a

photon with opposite momentum at the same time in a

standing wave [21]–[25], which is essentially the diffraction

of electrons by the periodic optical potential macroscopi-

cally. Shortly after the first experimental realization of the

KD effect, the two-color KD effect was predicted, corre-

sponding to the higher order quantum scattering process

between electrons and photons in free space [26], [27]. The

progress in ultrafast laser technology makes the research

on ultrafast dynamics possible in KD effect and some new

phenomena has been detected in the ultrafast KD effect

[28], prompting explorations on ultrafast dynamics between

free electrons andphotons. Furthermore, the important role

of the interference between quantum paths was also high-

lighted [29]. It opens the door to the study of the KD effect

in arbitrary light fields such as structured light, and paves

theway to realize the interaction between high-dimensional

optical modes and free electrons [30], [31].

In the spin-dependent KD effect, the spin of electrons

undergoes periodic precession in one-dimensional standing

wave formed by circularly polarized light [32]–[34]. It shows

an extra-dimension of the interaction between the electrons

and the electromagnetic field, and provides a platform to

study the spin-dependent scattering process and coherent

control the spin electrons states [35], [36]. However, spin-

dependent KD effect had not been observed experimen-

tally. The theoretical results indicate that, in order to make
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the spin effect significant, the wavelength of the standing

wave should be shortened to the extreme ultraviolet (EUV)

or even hard X-ray, and the corresponding laser intensity

needs to be increased to 1019 ∼ 1022 W/cm2 [32]–[36]. These

extreme conditions could not be reached based on the exist-

ing laser system even if the complicated optical system in

EUV and X-ray might be tolerated.

Here we propose a scheme to achieve the spin-

dependent KD effect by having free electrons interact with

a 2D triangular optical lattice, which is formed by the laser

with wavelength in visible or near-IR and greatly decreased

intensity instead of EUV or X-ray laser with extreme high

intensity. It is found theoretically that, by adjusting the

polarization angle 𝜃 of the linearly polarized laser beams,

the weakened spin-independent potential and relatively

enhanced spin-dependent potential in 2D optical lattice

could greatly relax the conditions required for the spin-

dependent KD effect. The numerical solutions explicitly give

diffraction patterns of electrons showing obvious spatial

inversion symmetry breaking, which results from the spa-

tial inversion symmetry breaking ponderomotive potential.

Electrons carrying opposite spin produce complementary

diffraction patterns, indicating spin-dependent KD effect.

2 Theoretical scheme

The triangular 2D optical lattice is constructed by three lin-

early polarized visible or near-IR laser beamswith the same

wavelength and intensity, as shown in Figure 1(a). Three

laser beams intersect in x–y plane at an angle of 120◦ with

each other, forming a spatial periodic intensity distribution

as well as a periodic ponderomotive potential for electrons

by interference. The free electrons inject normally into the

optical lattice (along z-axis) and the KD effect would take

place in Raman–Nath regime. The following calculation

indicates that the ponderomotive potential of 2D triangu-

lar optical lattice is electron spin-dependent and spatial

inversion symmetry breaking, which results in the electron

diffraction pattern with broken spatial inversion symmetry.

Free electrons with opposite spin directions exhibit comple-

mentary diffraction patterns, so that the spins of the elec-

trons incident into the optical lattice can be distinguished

by the diffraction patterns.

The angle between the polarized laser beam and the

normal direction of the optical lattice (z axis) is defined as 𝜃

shown in Figure 1(a). And as shown in Figure 1(b) and (c),

we define r⃗1, r⃗2 as the lattice vectors analogous to those

in atomic lattice and b⃗1, b⃗2 as the corresponding recipro-

cal lattice basis vectors with r⃗i b⃗ j = 2𝜋𝛿i j. According to the

laser polarization, the optical lattice can be divided into

Figure 1: Schematic diagram of free electrons spin-dependent

Kapitza–Dirac (KD) effect in two-dimensional (2D) triangular optical

lattice. (a) Three linearly polarized lasers are incident in the plane at 120◦

with respect to each other, which form a periodic intensity distribution,

namely an optical lattice. The polarization directions of the three lasers

are all rotated from n̂ to k̂i × n̂ by 𝜃. The electrons with the spin direction

of+ẑ or−ẑ are incident along z direction and diffract into pattern with
broken spatial inversion symmetry. (b) Spatial distribution of the

potential experienced by electrons, which is proportional to the intensity

of the optical lattice. r⃗1 and r⃗2 are the lattice vectors, while A and B are

different sites in the optical lattice. The length of the lattice vector is||| r⃗1||| = ||| r⃗2||| = 2∕3𝜆. (c) The k-space of the lattice. b⃗1 and b⃗2 are

the reciprocal lattice basis vectors. Γ is the origin in reciprocal space,

corresponding to the zero-order diffraction spot.

two types. In the case of 𝜃 = 𝜋∕2, the polarization of laser
beam is parallel to the optical lattice plane (x–y plane). The

electric field E⃗ at the center of site A and B can be written as

Eq. (1a), which indicates that there exists phase difference

between Ex and Ey and the electric field rotates in the plane

of the optical lattice. In the case of 𝜃 = 0, the polarization of

laser beam is perpendicular to the optical lattice plane and

the magnetic field B⃗ is parallel to the optical lattice plane.

Equation (1b) indicates the magnetic field rotates in x–y

plane, similar to the electric field when 𝜃 = 𝜋∕2. Any other
polarizations could be divided into the above two cases.

Thus, this 2D lattice has the property of field rotation in

x–y plane, which is due to the interference of three linearly-

polarized laser beams rather than the spin of the laser beam.

This field rotation is defined here as the pseudospin of the

optical lattice. Besides, Eq. (1) indicates that the pseudospin

of the optical lattice is site-dependent and such an optical

lattice shows spatial inversion symmetry breaking.

E⃗
A∕B,𝜃=𝜋∕2 =

3

2
|E|e−i𝜔t(x̂ + e±

i𝜋

2 ŷ
)

(1a)

B⃗
A∕B,𝜃=0 =

3

2
|B|e−i𝜔t(x̂ + e±

i𝜋

2 ŷ
)

(1b)
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Unlike the previous work where the electron beam is

incident into the standing wave at the Bragg angle [33]–[35],

in this paper the incident direction of electron beam is

perpendicular to the plane of the optical lattice, and the KD

effect is in the Raman–Nath regime. To separate the mat-

ter and anti-matter components, the weak relativistic Dirac

equation is introduced by using the Foldy–Wouthuysen

transformation [37],

iℏ
𝜕

𝜕t
𝜓 =

⎛⎜⎜⎜⎝

[
−iℏ∇− qA⃗

]2
2m

− qℏ

2m
𝜎⃗ ⋅ B⃗−

[
−iℏ∇− qA⃗

]4
8m3c2

− qℏ

4m2c2
𝜎⃗ ⋅

{
E⃗ ×

(
−iℏ∇− qA⃗

)}

+ qℏ

8m3c2

{
𝜎⃗ ⋅ B⃗,

[
−iℏ∇− qA⃗

]2}⎞⎟⎟⎟⎠
𝜓

(2)

where 𝜓 is Pauli spinor, m is electron mass, q is electron

charge, A⃗ is the vector potential and 𝜎⃗ =
(
𝜎x, 𝜎y, 𝜎z

)
is

the Pauli matrices. The first term and the second term on

the right side are consistent with the Schrödinger equation,

while the third term is the relativistic correction to the

first term. The fourth term on the right side leads to the

spin–orbit coupling and coupling of the optical lattice pseu-

dospin to the electron spin. The last term is anticommutator,

representing the correction to the Zeeman coupling [33]. In

the triangular optical lattice, the vector potential A⃗i of three

lasers with angular frequency 𝜔 is

A⃗i =
E⃗i
𝜔
sin

(
k⃗i ⋅ r⃗ −𝜔t

)
, i = 1, 2, 3 (3)

where k⃗i is the wave vector of three laser beams. To derive

the time-independent potential function of free electrons in

the optical lattice, we substitute Eqs. (3) into (2) and utilize

Magnus expansion to the second order [38], [39]. Ignoring

the items in theMagnus expansion that do not grow linearly

with time and the high-order small quantities in the visible

to near-infrared band, the wave equation can be written as

follows,

iℏ
𝜕

𝜕t
𝜓 =

(
− ℏ

2

2m
∇2 + V0 + Vspin + Vp

)
𝜓 (4a)

V0 = Ω0

(
mc2

2ℏ𝜔

)(
− 1

2
sin2

(
𝜃
)
+ cos2

(
𝜃
))∑

i

cos
(
Q⃗i ⋅ r⃗

)
(4b)

Vspin =
√
3

8
Ω0 𝜎⃗ ⋅ ẑ

(
sin2

(
𝜃
)
− cos2

(
𝜃
))∑

i

sin
(
Q⃗i ⋅ r⃗

)
(4c)

Vp =
√
3

4
Ω0 𝜎⃗ ⋅ sin

(
2𝜃

)∑
i

Q̂i sin
(
Q⃗i ⋅ r⃗

)
(4d)

where Ω0 = (qE0ℏc)
2

ℏ𝜔(mc2)
2 represents the general scale of pon-

deromotive potential, V0 is the spin-independent pondero-

motive potential of the optical lattice for electrons, V spin

and Vp are the spin-dependent ponderomotive potentials,

corresponding to the inversion asymmetric ponderomotive

force and the spin precession, respectively. E0 is the electric

field amplitude. Q⃗1 = b⃗1, Q⃗2 = b⃗2 and Q⃗3 = −
(
b⃗1 + b⃗2

)
are

introduced for compactness. The relation between Q⃗i and

wave vectors k⃗i are k⃗i − k⃗ j = Q⃗l, where (i, j, l) ∈ {(3,2,1),

(1,3,2), (2,1,3)}, and Q̂i is the direction vector of Q⃗i which ful-

fills
∑

i Q⃗i = 0. To keep the KD effect in Raman–Nath regime,

the total ponderomotive energy should be higher than the

electrons recoil kinetic energy [23].

The spin-dependent ponderomotive potentials origi-

nate from the pseudospin of optical lattice, which leads

to non-vanishing time-independent term in 𝜎⃗ ⋅
(
E⃗ × qA⃗

)
and in Magnus expansion of 𝜎⃗ ⋅ B⃗. Considering that the

electron spin direction is perpendicular to the optical lat-

tice plane (x–y plane), the electrons will carry additional

spin-dependent energy by V spin according to Eq. (4c), which

contains only the z-component Pauli matrix 𝜎z. As a result,

the electrons experience additional ponderomotive force

because of V spin. On the other side Vp corresponds to the

electron spin precession only. For spin-up electrons, V0 and

V spin are illustrated as the upper half and lower half of

Figure 2(a), which are actually decided by the spatial modu-

lation function
∑

i cos
(
Q⃗i ⋅ r⃗

)
and

∑
i sin

(
Q⃗i ⋅ r⃗

)
in Eq. (4),

respectively. It can be seen that V0 is spatial inversion sym-

metric, which would result in the spatial inversion symmet-

ric diffraction pattern of electrons.V spin shows spatial inver-

sion symmetry breaking, leading to the electron diffraction

pattern with broken spatial inversion symmetry. Thus, the

amplitude ratio of potentials V spin and V0 is defined as

(
Vspin

)
p p(

V0
)
p p

=
|||||
(
ℏ𝜔

2mc2

)
cos

(
2𝜃

)
1− 3∕2 sin2

(
𝜃
) ||||| (5)

where
(
Vspin

)
p p
and

(
V0

)
p p
denotes the peak-to-peak value

of V spin and V0, respectively, for revealing whether the

feature of spatial inversion symmetry breaking of electron

diffraction pattern is obvious or not.

With the potential, the spin-dependent electron diffrac-

tion patterns can be further obtained by calculating the

wave function |𝜓 | in Eq. (4a). In our calculations, we

assume that the electron is an ideal plane wave vertically
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Figure 2: Spatial inversion symmetry properties of ponderomotive potentials and the relation between the amplitude ratio
(
Vspin

)
p p
∕
(
V0
)
p p
and

wavelength and polarization angle. (a) The upper and lower parts are V0 and V spin, respectively, indicating V0 is spatial inversion symmetric while V spin
is not. (b)

(
Vspin

)
p p
∕
(
V0
)
p p
as a function of wavelength and polarization angle. For wavelength 𝜆 = 0.1 nm,

(
Vspin

)
p p
∕
(
V0
)
p p
is 4 orders of magnitude

higher than that in the visible or near-IR band. The white arrow shows the enhancement to the order of 10−2 in the vicinity of 𝜃0 when 𝜆 = 400 nm,

and the detail is plotted in (c).

incident into the light latticewith no transversemomentum,

that is, the initial state wave function is 𝜓 (0) = c(0)ei p⃗⋅ r⃗

where p⃗ is the initial momentum and c(0) is the initial

spin state of the free electron. The optical lattice extends

to infinity in the x–y plane and has ideal periodic trans-

lation symmetry. In such an optical lattice, the transverse

momentum of electrons is modulated. Since the terms lin-

early to field components is ignored, the initial momen-

tum of the electron and the thickness of the optical lat-

tice in electron traversing direction determine the interac-

tion time and thereby affect the interaction between the

electron and the optical lattice. For the same reason the

initial momentum component ei p⃗⋅ r⃗ in the electron wave

function is ignored below. According to energy andmomen-

tum conservation, the transverse momentum distribution

of electrons after passing through the optical lattice is

mb⃗1 + nb⃗2,m, n ∈ Z. Therefore, the wave function of elec-

trons can be expressed as 𝜓 (t) =
∑

m,n∈Zcm,n(t)e
i
(
m b⃗1+n b⃗2

)
⋅ r⃗
,

where cm,n(t) =
[
c↑m,n(t), c

↓
m,n(t)

]
is a Pauli spinor containing

the wave function expansion coefficients of electrons with

opposite spin directions. Substituting the wave function

into Eq. (4a) and setting the initial condition c(0) = c0,0(0) =
[1, 0] or [0, 1] for the spin ±ẑ, the coefficients cm,n(t) and

the diffraction probability Pm,n(t) =
|||cm,n(t)|||

2
, as well as the

electron diffraction pattern, could be calculated.

3 Spin-dependent electron

diffraction results

3.1 The selection of polarization angle in 2D
optical lattice

In order to obtain spin-dependent diffraction effect obvi-

ously, two conditions should be satisfied simultaneously.

One is the Raman–Nath condition, that is,
(
Vspin + V0

)
p p

should be larger than the electron recoil kinetic energy.

Another is that
(
Vspin

)
p p
∕
(
V0

)
p p

must be relatively large.

The following discussions are about how to set the laser

intensity, wavelength 𝜆 and polarization angle 𝜃 of 2D tri-

angular optical lattice to meet the above two conditions.

For the strong laser intensity excited optical lattice,

according to Eqs. (4b) and (4c),
(
Vspin + V0

)
p p

is very large

(see Figure S1 in the Supplementary Materials [40]) and the

Raman–Nath condition is easily satisfied. Further consider-

ing
(
Vspin

)
p p
∕
(
V0

)
p p

according to Eq. (5), its value is plot-

ted in Figure 2(b) as functions of 𝜆 and 𝜃. For short wave-

length, e.g. 𝜆 = 0.1 nm,
(
Vspin

)
p p
∕
(
V0

)
p p

is relatively large

(approximately 10−2) for most of 𝜃. While, for long wave-

length, e.g. 𝜆= 400 nm, 𝜃 should be confined in the vicinity

of 𝜃0 (arcsin
(√

2∕3
)
) to get a high

(
Vspin

)
p p
∕
(
V0

)
p p
value.



J. Tian et al.: Spin-dependent Kapitza-Dirac effect in two-dimensional optical lattice — 5

For example, as shown in Figure 2(c),
(
Vspin

)
p p
∕
(
V0

)
p p

is

larger than ∼0.03 when |Δ𝜃| = ||𝜃 − 𝜃0|| ≤ 20 𝜇rad, which

has been increased by nearly four orders of magnitude

compared with those when 𝜃 = 0, 𝜋/2. Thus, for 2D trian-

gular optical lattice excited by strong laser in the visible

or near-IR band, we only need to make Δ𝜃 small so that(
Vspin

)
p p
∕
(
V0

)
p p
is large enough.

For the weak laser intensity excited optical lattice,(
Vspin + V0

)
p p
becomes very small as the V0 vanishes at 𝜃0

(see Figure S1 in the Supplementary Materials [40]), so that

𝜃 should not be too close to 𝜃0 to meet the Raman–Nath

condition. Besides,
(
Vspin

)
p p
∕
(
V0

)
p p
should be further con-

sidered according to Figure 2(b). For short wavelength,(
Vspin

)
p p
∕
(
V0

)
p p

is relatively large (approximately 10−2)

for most of 𝜃. While, for long wavelength, 𝜃 should also

be confined in the vicinity of 𝜃0 (micro-radians level) to

obtain relatively large
(
Vspin

)
p p
∕
(
V0

)
p p

∼ 10−2, which is

improved by 4 orders of magnitude. Therefore, to obtain

significant spin-dependent diffraction under weak laser

intensity, Δ𝜃 should be small to have relatively large(
Vspin

)
p p
∕
(
V0

)
p p

but should not be too close to zero to

satisfy the Raman–Nath condition.

In all, to obtain spin-dependent electron diffraction by

visible or near-IR 2D triangular optical lattice, the laser

intensity and 𝜃 should be considered simultaneously as

follows. (1) For strong laser intensity, 𝜃 should be in the

vicinity of 𝜃0 (tens ofmicro-radians level); (2) Forweak laser

intensity, 𝜃 should be in the vicinity of but not too close

to 𝜃0.

3.2 Spin-dependent diffraction patterns
with 2D optical lattice

According to the theoretical analysis, the spin-dependent

electron diffraction pattern can be numerically calculated

under specific conditions. At the polarization angle 𝜃 =
54.735◦ (Δ𝜃 ≈ −11 μrad), for optical lattice with laser wave-
length 𝜆 = 400 nm and electric field amplitude E = 5.0

× 1010 V/m (corresponding to I = 3.32 × 1014 W/cm2),

Figure 3 illustrates the calculated electrons diffraction pat-

tern exhibiting obvious spin-dependent KD effect. The left

and the right panels show the diffraction pattern of elec-

trons with +ẑ and −ẑ spin, respectively. The final diffrac-
tion pattern is directly influenced by the duration time of

free electrons in the optical lattice, which is defined as the

interaction time 𝜏 . Themomentum distribution of electrons

changes continuously while interacting with the optical lat-

tice, leading to different diffraction patterns with differ-

ent 𝜏 . Figure 3 illustrates the diffraction pattern with 𝜏 =
3,000, 6,253, and 7,500 T (T represents the laser oscillation

period, and 𝜏 ≈ 4.0 ps, 8.3 ps, and 10.0 ps), respectively. In

the electron diffraction pattern, we can find the principal

component (the central diffraction spot), the six 1st-order

diffraction spots around the central diffraction spot, and the

2nd-order to 5th-order diffraction patterns in the outer ring

of the 1st-order diffraction pattern.

The 1st-order diffraction spots show theproperty of spa-

tial inversion symmetry breaking, especially in Figure 3(b)

and (c). The three obvious spots, as well as the three incon-

spicuous spots, reveal a C3 symmetry rather than C6 symme-

try around the electron beam axis. In order to illustrate the

spatial inversion symmetry breaking of diffraction pattern

more obviously and quantitatively, the middle panels in

Figure 3 draw the spin-dependent diffraction probability of

the six first-order spots, whose locations are described by

degree 𝛽 = 0, 60◦, . . . , 300◦. Left and right half correspond to

spin direction +ẑ and −ẑ, which illustrate that there exists
significant difference of diffraction probability for the same

spot 𝛽 . This is consistentwith the nature of the optical lattice

with broken spatial inversion symmetry.

For the second to fourth order diffractionpattern, the C3
symmetry feature can still be identified in spite of the lower

diffraction probability (see the diffraction pattern and prob-

abilities at higher-order spots in Supplementary Materials

[40]). Therefore, the calculation results in Figure 3 reveal

the spin-dependent KD effect and confirm that the relatively

enhanced V spin could lead to the KD effect. Theoretically, if

the laser intensity of the optical lattice is enhanced, the elec-

trons would be scattered to diffraction spots of higher order

(beyond the±5th order) and the spin-dependent diffraction
pattern could be distinguished there.

3.3 The visibility of spin-dependent
diffraction pattern and the discussions

Considering that the 1st-order diffraction pattern has less

diffraction states and obvious different diffraction pattern,

it is more reasonable to verify the spin effect in the 1st-

order diffraction pattern. Figure 4(a) illustrates the calcu-

lated electron diffraction probabilities of spin ±ẑ, P↑
(
b⃗1

)
andP↓

(
b⃗1

)
, as a function of interaction time (b⃗1 is one of the

1st-order electron diffraction spots as shown in the left inset

of Figure 3(a)). It can be seen that the P↑
(
b⃗1

)
and P↓

(
b⃗1

)
oscillate when extending interaction time, corresponding to

the shift of electrons among the central, the 1st-order and

the 2nd-order diffraction states, and the probability differ-

ence between the opposite spins can be verified clearly. In

order to quantify electrons spin effect, the visibility, V =
P
↑
(
b⃗1

)
−P

↓
(
b⃗1

)
P
↑
(
b⃗1

)
+P

↓
(
b⃗1

) ∈ [−1, 1], is introduced here to describe the
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Figure 3: Diffraction patterns and probability of free electrons with the interaction time 𝜏 = (a) 3,000T , (b) 6,253T, and (c) 7,500T (T represents the

laser oscillation period). The left and the right panels are the 1st to 5th order diffraction pattern with spin direction+ẑ and−ẑ, respectively. Each spot
in the pattern corresponds to a certain reciprocal point of the optical lattice. The white dashed line in each figure indicates where the 1st order

diffraction pattern locates, which corresponds to the left inset of (a). In the middle panels, the diffraction probability of the six 1st-order spots with

+ẑ (left half) and−ẑ (right half) spin varies with the spots location identified by the degree, which is illustrated as the right inset of (a). The diffraction
probabilities are extracted from the left and the right panels, respectively. Here, the optical lattice is formed by laser beams with 𝜆= 400 nm and

E = 5.0 × 1010 V/m (intensity I = 3.32 × 1014 W/cm2).

normalized probability difference of opposite spin ±ẑ in

the spots of b⃗1 as depicted in Figure 4(b). The visibility of

the 1st-order diffraction pattern increases gradually and

then reaches a local maximum, but the diffraction proba-

bilities, P↑
(
b⃗1

)
and P↓

(
b⃗1

)
, reach a local minimum at T0.

The corresponding diffraction pattern when the visibility

reaches localmaximum is depicted in Figure 3(b), indicating

that the property of spatial inversion symmetry breaking

around T0 is more obvious compared to those in Figure 3(a)

and (c). In the one-dimensional KD effect in Raman–Nath

regime, the probabilities evolution of each order diffraction

fit the square of the first-kind Bessel functions very well.

This relation in two-dimensional KD effect, however, is only

roughly approximated, with no zero-crossing moment. So

the moment when the first order diffraction probabilities

reach their first minimum could only be estimated roughly

as T0 ∼ j1,1ℏ∕
(
3
(
V0

)
p p

)
, where j1,1 is the first root of the

first-order Bessel function,
(
V0

)
p p

is the peak-peak ampli-

tude of V0, and the factor 3 results from the triples of elec-

tron diffraction paths in triangular optical lattice compared

to those in one-dimensional standing wave. This T0 for esti-

mating the maximum visibility also works well for differ-

ent situations as shown in Figures S3 and S4. It thus pro-

vides an instruction to determine the electron propagation

length with specific electron kinetic energy for capturing

diffraction pattern with obvious broken spatial inversion

symmetry.

As stated above and shown in Table 1, the spin effect in

the 2D optical lattice can be obtained with greatly relaxed

conditions. This is mainly because the physical mechanisms

of spin-dependent KD induced by 1D standing wave and

2D optical lattice are quite different. In 1D standing wave,
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Figure 4: The evolution of the diffraction probabilities and the visibility. (a) The probabilities at the spot b⃗1. P
↑ and P↓ correspond to electrons carrying

spin+ẑ and−ẑ. (b) The visibility of b⃗1 diffraction spots of opposite spin versus interaction time. Plotted within the first 8,000T (𝜏 ≈ 10.7 ps).

Table 1: Theoretical results of laser wavelength and intensity for

obtaining spin-dependent KD effect. With 2D optical lattice, the available

visible-infrared laser beam with greatly reduced intensity could generate

spin-dependent KD effect.

REF Dimension Laser

wavelength (nm)

Laser

intensity (W/cm2)

[32] 1D standing wave 0.4 2.0 × 10

[34] 1D standing wave 0.159 1.1 × 10

[35] 1D standing wave 6.2 2.3 × 10

[36] 1D standing wave 0.159 1.1 × 10

This work 2D optical lattice
400 ∼10
800 ∼10

the electron spin effect reflects in periodic spin flipping

because of the spin precession during the electrons inter-

acting with the standing wave [32]–[36]. Different from pre-

vious works, in 2D optical lattice, the spin coupling comes

from the pseudospin of the optical field, rather than the spin

of the photon itself. The electron spin effect reflects in the

diffraction pattern and the visibility, which shows the spa-

tial inversion symmetry breaking. By adjusting the polariza-

tion of the laser, the spin effect of electron diffraction can

be produced in the optical lattice, which is created by the

visible to near-infrared lasers. By the way, the potential Vp

in Eq. (4)will cause the free electrons spin precessionduring

the interaction with the optical lattice, so that the electron

diffraction patterns of the two spin directions are coupled

(see Figure S7 in the Supplementary Materials [40]).

As mentioned in Table 1, this paper presents several

intensity cases for 400 nm and I = ∼1013 W/cm2 for 800 nm

to show that both visible and near-IR laser beam could be

adopted to experimental observe the spin-dependent KD

effect (see Figures S3 and S4 in Supplementary Materials

[40]). The selection of the available laser system should

consider the following factors. (1) It is better to use a shorter

laser wavelength in consideration of the electron beam

divergence angle. The optical lattice created by 400 nm laser

instead of 800 nm can endure more divergence angle of

electron beam. In other words, for the same electron beam,

the overlap between different diffracted spots should be

much less and diffraction pattern is easier to be identi-

fied for shorter wavelength. (2) Appropriate laser inten-

sity should be determined. The laser intensities for 𝜆 =
400 nm and 800 nm in Table 1 are chosen to compare the

different order of magnitude of the intensities. With the

intensity of these given orders, the KD effect remains in

Raman–Nath regime and the spin-dependent effect could

be obtained. According to the relation between the pon-

deromotive potentials and the electron recoil kinetic energy

in Eq. (4), the required laser intensities for longer wave-

length are much lower than those for short wavelength

(see Section II in Supplementary Materials [40]). Actu-

ally, the spin-dependent effect fades out with the decreas-

ing intensity gradually. With longer interaction time and

higher detection sensitivity, the spin-dependent diffraction

patterns may also be captured with lower laser intensity

according to Figure S4 in Supplementary Materials [40]. But

if the laser intensity is too weak to satisfy the Raman–Nath

conditions, the diffraction pattern will mostly gather in

the central spot and the spin-dependent effect will not be

observed. On the other hand, if the laser intensity is too high

to have the ponderomotive potential energy comparable

to a photon energy, the electron diffraction pattern would

shift to higher-order diffraction peaks in a very short time,

resulting in low probabilities of each diffraction order. This

brings higher requirements to the stability and consistency

of the laser system and the noise level of electron detection.
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(3) Besides, the laser spatial and temporal width used to

construct the optical lattice should be uniform within the

electron beam interaction range. On the basis of the above

considerations, thewavelength and the intensity of the laser

systemproposed in this paper can be realized by the current

technology. The high-intensity 800 nm or 400 nm lasers can

be achieved by high-energy Ti:Sapphire laser system [41],

[42] with pulse duration stretching and optional frequency

doubling devices [43].

In addition, the electron pulses used to verify the spin-

dependent KD effect should be well-collimated and carry

the same spin. This would ensure that the diffraction pat-

tern with obvious broken spatial inversion symmetry can

be generated after electrons passing through the optical

lattice. Such spin-polarized electron pulses could be realized

by applying circularly polarized laser on negative-affinity

photocathodes [44]–[46] according to the spin selection

rule.

4 Conclusions

In conclusion, we propose a method to achieve spin-

dependent KD effect by applying 2D triangular optical lat-

tice, which is created by three linearly polarized laser

beams. The spin-dependent diffraction patterns with bro-

ken spatial inversion symmetry could be obtained with the

wavelength relaxed from X-ray to visible or near-infrared

laser and the laser intensity is lowered by nearly five orders

of magnitude. The greatly relaxed condition is owing to

the relatively enhanced spin-dependent potential andweak-

ened spin-independent potential by carefully adjusting the

laser polarization. This work provides the feasibility of real-

izing spin-dependent KD effect based on the commercially

available laser and devices. It is expected to achieve coher-

ent and lossless manipulation of the spin states of elec-

tron beams, such as structured electron beams analogous

to structured light [47], [48], quantum random walk [49]

based on spin-dependent electron, and even the century-old

problemof realizing the Stern–Gerlach effectwith free elec-

trons [50]. Furthermore, the spin-dependent KD effect can

inspire profound exploration of spin effects in the interac-

tion between light and magnetic or chiral samples [51], [52],

as well as abundant ultrafast dynamics [53] with ultrafast

electron microscope.
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