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A programmable photonic solver for quadratic unconstrained
binary optimization (QUBO) problems is demonstrated with a
hybrid optoelectronic scheme, which consists of a photonic chip
and an electronic driving board. The photonic chip is employed to
perform the optical vector-matrix multiplication (OVMM) to
calculate the cost function of the QUBO problem, while the elec-
tronic processor runs the heuristic algorithm to search for the
optimal solution. Due to the parallel and low-latency propagation
of lightwaves, the calculation of the cost function can be acceler-
ated. The photonic chip was fabricated on the silicon on insulator
(SOI) substrate and integrated 16 high-speed electro-optic modu-
lators, 88 thermo-optic phase shifters, and 16 balanced photode-
tectors. The computing speed of the photonic chip is 1.66 TFLOP/s.
As a proof of principle, two randomly generated 16-dimensional
QUBO problems are solved with high successful probabilities.
These results present the potential of fast-solving optimization
problems with integrated photonic systems.

Keywords: Optical computing, Optimization problem, Integrated
photonics

INTRODUCTION

The rapid advances in artificial intelligence (Al) desire huge computa-
tion resources. Although the training of large-scale neural networks has
been significantly improved with electronic hardware, e.g. the graphics
processing unit, the energy consumption is still heavy. Recently,
various optical computing systems have been proposed to demonstrate
the optical neural networks (ONNSs) due to the superiority of the high-
speed and low-loss parallel propagation of lightwaves. These platforms
are based on spatial diffractive layers] -, on-chip optical matrix
multiplicationsj"(’, on-chip diffractive optics =%, etc. Such optical
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computing systems exhibit high computing speed and energy efficiency
in specific computation tasks, including vowel classification, image
classification, or content generation. Besides the identification and
classification, the nondeterministic polynomial hard (NP-hard) optimi-
zation problem is also important in the Al domain. For the NP-hard
optimization problem, it is required to find the input state that mini-
mizes the cost function. Such problems are ubiquitous but important in
physicsm, finance'!, biology12’13, etc., including the subset sum prob-
lem'*", the Ising probleml(’, and the traveling salesman problem
(TSP)”. The solving of NP-hard optimization problems can also be
accelerated with optical computing systernsl(’, including those based on
optical resonatorslg’m, polaritons25 , laser networksz(’, and optical
matrix multiplicationsﬂ’3 5. Different from ONNG, the optical param-
eters have to be precisely configured in the optical solver to conduct a
specific transmission function corresponding to the given optimization
problem. In addition, the ability to map any arbitrarily given problems
requires that the transfer function be highly programmable and recon-
figurable. However, optical solvers based on long fiber resonators” >
or complicated spatial-optical systems%’zg 33-35 usually face chal-
lenges of large space occupation, high energy consumption, and
ambient and vibrational destabilization. Besides, it is difficult to inte-
grate multiple such systems to form a large-scale optical solver. One
possible technical approach is to implement optical solvers with pho-
tonic chips. For instance, the subset sum problem can be solved with the
silicon photonic circuits consisting of split junctions]"l’15 , however, the
employed circuit is only for specific problems and is not reconfigurable.
In the photonic recurrent Ising sampler (PRIS)30’31, a programmable
photonic circuit that can perform arbitrary OVMM is first employed to
solve an arbitrary Ising problem, which shows the feasibility of
implementing a high-speed optical solver with a photonic chip. How-
ever, only 4-spin problems with the solution space of 2* are solved,
which are insufficient for practical applications. In addition, an inte-
grated photonic solver based on tunable delay lines was proposed
theoretically to solve large-scale TSPs, but only numerical simulations
were performed”. It can be seen that, how to extend the dimensionality
of the on-chip photonic solver still needs to be addressed, although the
previous photonic solvers have shown the potential to achieve high
computing speed and energy efficiency.

In this work, we proposed and demonstrated a photonic solver for
QUBO problems, which is based on a hybrid optoelectronic scheme
including a photonic chip for the OVMM and an electronic driving
circuit. Two 16-dimensional QUBO problems, whose complexity is
equivalent to 16-spin Ising problems3 ©, are successfully solved in the
experiment. With the eigendecomposition of the weight matrix of the
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QUBO problem, the calculation of the cost function can be accelerated
with the on-chip OVMM. To conduct the required OVMM, the pho-
tonic chip integrated 16 optical amplitude modulators, a Mach—Zehnder
interferometer (MZI) array including 64 multimode interference (MMI)
couplers and 88 thermo-optic phase shifters, and 16 balanced photo-
detectors (BPDs). The electronic driving circuit, which mainly com-
prises a field-programmable gate array (FPGA), was employed to
control the photonic circuits, process the optical signals, and conduct
the necessary heuristic algorithm. During the operation of the photonic
solver, each single iteration takes 265.1 ns, and the computing speed of
the photonic chip is 1.66 TFLOP/s. These results indicate that the
process of solving the optimization problems can be accelerated with
photonic chips.

ARCHITECTURE OF THE PHOTONIC SOLVER

The proposed photonic QUBO solver employs a hybrid optoelectronic
architecture shown in Fig. 1, which consists of a 1550-nm laser (ID
Photonics Model CBDX1-1-SC-FA), a photonic chip, and an electronic
driving board. The photonic chip was fabricated on the silicon on
insulator (SOI) substrate with the 130 nm process (CSiP130C) of silicon
photonics in Chongqing United Microelectronics Center (CUMEC). The
process available in CSiP130C consists of 3 steps of silicon etching, 4
levels of n-type and p-type doping, Ge epitaxy, TiN metal heater, doped
Si heater, Tungsten plug contact, 2 levels of copper interconnections, Al
bond pad, and deep etching. The photonic chip consists of coupling
gratings, beamsplitters, amplitude modulators, an MZI array, mixers, and
BPDs. Here, each electro-optic amplitude modulator consists of a 1 x 2
and a 2 x 2 multimode interference (MMI) couplers, and a phase shifter
on each arm combined with traveling-wave electrodes and p-n junctions
to achieve high modulation speed. Each mixer is a 2 x 2 MMI coupler.
On the chip, the beam was first split into the signal and reference beams.
The signal beam was further splitinto N = 16 beams as the input of the
MZI array. The driving board is composed of an FPGA (Xilinx Zynq
UltraScale + RFSoC XCZU29DR), digital-to-analog converters (DACs,
Analog Devices AD5767) for the MZI array, operational amplifiers

High-speed DAC

FPGA

(OAs, Analog Devices ADA4927-2), and trans-impedance amplifiers
(TIAs, Texas Instruments LMH32401). The FPGA controls the voltages
of the MZI array and the amplitude modulators. The optical signals from
the MZI array are detected by the BPDs, and are finally received by the
FPGA via the TIAs and the internal analog-to-digital converters (ADCs).
Furthermore, the FPGA executed the heuristic algorithm. To obtain
stable OVMM, a cooling module was employed on the photonic chip to
maintain the chip temperature at 37 °C during the operation.

Our proposed photonic solver is employed to solve the NP-hard
QUBO problem, where the N-dimensional binary vector s € {0, 1}"
needs to be found to minimize the cost function C(s)”’:

1

C(s) = —EsTKs. 6))

In Eq. (1), K is a real symmetric weight matrix, and the superscript T
denotes the transpose. The weight matrix K can be decomposed by
K = Q'DQ, where D is the diagonal eigenvalue matrix and Q denotes
the orthogonal eigenvector matrix. If all the eigenvalues of K are non-
negative, the cost function C can be written as follows:

1
C =

= —EsTQTDQs =

1
—5(As)" (4s), @
whereA = \/EQ. In the OVMM, the input vector is set to s and the
transformation matrix is set to A. Denoting the output vector of the

OVMM by E, = As, Eq. (2) becomes

lN
C:_EZ
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N 12
E(’)

out

3

Eq. (3) indicates that the calculation of the cost function is accelerated
by one step of OVMM. When solving a QUBO problem, the OVMM of
the photonic chip is configured to A. In each iteration, the cost function is
calculated and the spins are changed according to the adopted heuristic
algorithm. In the experiment, the photonic solver executes a simulated-
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Fig. 1 | The architecture of the photonic solver.
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annealing-like algorithm3 +
QUBO problems.

The OVMM on the photonic chip is based on the pseudo-real-value
architecture®®, which has lower loss and hlgher scalability than the
singular-value-decomposition architecture®®. Moreover, the balanced
detection can reduce the signal noise. As a trade off, the pseudo-real-
value architecture has lower reconﬁgurablhty and can only perform
real matrix transformations®®. This architecture with 4 channels is
employed to demonstrate vision tasks in the previous work™®, while we
only focus on solving QUBO problems in the current work. The size of
the photonic chip is 7.5 x 5 mm?, as shown in the microscope image of
Fig. 2a. Fig. 2b and c are the scanning electron microscope (SEM)
images of a coupling grating from the cross-section view and the top
view respectively. Fig. 2d and e depict the cross-section images of the
waveguides. Fig. 2f shows the microscope image of the beamsplitter,
and the SEM image of a 1 x 2 MMI coupler in the beamsplitter is
shown in Fig. 2g. Fig. 2h shows the microscope image of a mixer. The
16-dimensional binary input vector s is encoded on the amplitudes of
the signal beams with the electro-optic amplitude modulators. Then the
signal beams are guided to the MZI array. The structure of the Fast-
Fourier-transform-mesh (FFT-mesh) MZI array is shown in Fig. 3,
which consists of 16 input ports, 4 layers of MZIs, and 16 output ports.
In the MZI array, there are 88 thermo-optic phase shifters, which
determine the transformation matrix. The cross-connections between
the MZIs are implemented with crossing waveguides. To enhance the
spurious-free dynamic range of the MZI array, the “equal length, equal
loss” design was employed, which means that the light passes through
the same optical path and the same number of crossing waveguides from
any input port to any output port. Such a design provides robustness
against temperature fluctuation. The detailed design of the MZI array is
provided in the Supplemental Material.

Theoretically, the MZI array can perform a 16 x 16 unitary matrix
transformation U(V), which is the function of the bias voltages V =
[Vi,v2...,vgg] on the thermo-optic phase shifters. The output complex

to search for the near-optimal solutions of

amplitude vector of the MZI array is Eoy; = Us. As shown in Fig. 1,

each output beam of the MZI array is input to a mixer along with 1 of 16
reference beams from beamsplitter 2. In mixer i (i = 1,2, ...,16), the
complex amplitude of the beam from the MZI array is denoted by

EY exp (1¢0ut) and that of the reference beam is ’Eref‘exp (1¢ref)

out

(the amplitudes of the reference beams are the same). Therefore, the
intensities of the two output ports of mixer i are

1 =

£

out

+‘E()

out

Eret 22| |[EGh cos (dm — 0 ). @)
which would then be detected by BPD i, resulting in the differential
current signal

M =110 =4

COS( 1) )

real part), by setting q,’)réf to 0, 11(3’1),D = 4]Eref|Re(E((,3t

Erel [Equileos (60— 8 ). )

Since E(()gt

Re (Egﬂt) (Re( -) represents taking the

) . The input

vector s consists of real elements s;€{0,1}, hence Re(Eoy) =
Re(Us) = Re(U)s, and we have

Igpp = 4|Erer|Re(Eout) = 4|Eret|Re(U)s. (6)

Eq. (6) indicates that, if the BPD signals Igpp is regarded as the
output vector, the OVMM is indeed conducting a real matrix trans-
formation A o« Re(U) on the input vector s. To avoid confusion, in the
following discussion, the output vector denotes the BPD signals, and
the real matrix denotes the corresponding real transformation matrix A.

According to Eq. (2), any transformation matrix A corresponds to a
QUBO problem with the weight matrix K = ATA, which is positive
semi-definite since xTKx = (Ax)TAx >0, Vx&RY. Thus, according
to Egs. (3) and (6), the experimental cost function Cey), can be calculated
from the output signal
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Fig. 2 | The image of the photonic chip. a, The microscope image of the photonic chip. b, ¢, SEM images of a coupling grating from the cross-section view and the top
view respectively. d, e, The SEM images of the waveguides from the cross-section view. f, The microscope image of the beamsplitter. g, The SEM images of a 1 x 2 MMI
coupler in f. h, The microscope image of a mixer. The positions of the components are denoted by the red boxes. Abbreviations: MMI, multimode interference; SEM,

scanning electron microscope.
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EXPERIMENTAL DEMONSTRATION

In the experiment, we generated two configurations of the bias voltages
V1 and V3 (the 32 voltages on the MZIs in Fig. 3 are randomly generated
while the others are 0), and then employed them on the photonic chip
respectively. Thus, two transformation matrices A; and A, can be ob-
tained by measuring the output matrices when the input is the identity
matrix. The transformation matrices A; and A, correspond to the QUBO
problems with weight matrices K| and K, respectively. The two prob-
lems are denoted by Q1 and Q2 for simplicity, and their weight graphs are
shown in the insets of Fig. 4a and b, respectively, where the black dots
denote the variables and the color bar denotes the weight.

Each problem is solved for 100 times, and the accepted states in all
iterations are recorded. To evaluate the solving performance, the cost
functions C of the accepted states are calculated with Eq. (1), and the
evolution curves of C of Q1 and Q2 are plotted in Fig. 4a and b,
respectively. It can be seen that C fluctuates above Cp,j, denoted by the
black dashed line (Cyyi, is the lowest C obtained in numerical simula-
tions) within a small range after about 400 iterations. To quantify the
solving performance, a run is considered to be successful if the theoretical
cost function of the final accepted state is lower than 7Cy,, where n €
(0,1] is the tolerance coefficient. Then the successful probability is
defined as the proportion of the successful runs. The successful proba-
bilities of Q1 and Q2 undern = 0.960ton = 0.995 are calculated, and
the results are shown in Fig. 4c and d, respectively. It can be seen from
Fig. 4c and d that the successful probabilities are close to 1 when n <
0.98, while they tend to decrease quickly when n > 0.98. Such results
indicate that our photonic solver is capable of solving QUBO problems.
The corresponding simulation results are provided in Fig. 4c and d for
comparison, respectively, which show that the successful probabilities in
simulation are close to 1 even when n = 0.995. The decay in the
experiment is mainly attributed to the fluctuation of the experimental cost
function, which may result from the detection noise of the photodetector,
the deviation of the OVMM, and the fluctuation of the laser power. They
will be discussed in the next section.
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RESULTS

Accuracy of the OVMM  We first discuss the stability of the OVMM,
which is directly associated with the accuracy of the experimental cost
function. Due to the high sensitivity to the temperature of the photonic
chip, even a small temperature variation would result in a completely
different optical matrix transformation. Therefore, a cooling module is
employed to stabilize the working temperature of the photonic chip at
37 °C. In the experiment, the temperature fluctuation is less than
0.005 °C. To quantity the stability of the OVMM, the fidelity F' of each
output vector is calculated by the following equation:

Shgpoly’

[l T

i i

F = Fe0,1], ®)

where It = [I%l)} = As is the theoretical output vector. The fi-
delity indicates the parallelism of the vectors Igpp and It. The fi-
delity close to 1 can indicate the high stability of the OVMM. The
average fidelity and the corresponding standard deviation of each
run for Q1 and Q2 are shown in Fig. 4e. It can be seen that all the
average fidelities are higher than 0.99 with small distribution, and
the total average fidelities of Q1 and Q2 are 0.9953 + 0.0017 and
0.9934 + 0.0025, respectively. Such results indicate that the OVMM
of the photonic chip is quite stable during the solving process.

Besides the fidelity, the noise of the BPD and the fluctuation of the
laser power can also degrade the accuracy of the OVMM. If the total
noise level of the cost function is larger than the variation of the cost
function, the photonic solver would give the incorrect solution. There-
fore, the scale factor of the experimental cost function is used to evaluate
the total noise level. The scale factor P in each iteration is defined as P =
Cexp/Citheo = |IBPD|2/|IT\2, where Cipeo = f|IT\2/2 is the theoretical
cost function. In ideal conditions, P should be a constant. In the exper-
iment, the fluctuation of P mainly results from the laser power fluctuation
and the detection noise. When Cype, are equal, we have

Cop P

SNR = = —
ACep AP’

€))
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volution curves of Q1 and Q2, respectively. The insets show the corresponding weight

graphs, where the weight can be inferred from the color bar. ¢, d, The simulation and the experimental results of the final successful probabilities under different tolerance

coefficients of Q1 and Q2, respectively. e, f, The average fidelity and scale factor i
deviations, respectively.

where SNR denotes the signal-to-noise ratio of the experimental
cost function, ACeyp is the noise level of Cexp, and AP is the
standard deviation of the scale factor P. For convenience, the
average scale factor and the corresponding standard deviation of
each run are calculated in all iterations, and the results of Q1 and Q2
are shown in Fig. 4f. It can be seen that in each run the scale factor P
only distributes in a small range. The average SNRs of 100 runs of
Q1 and Q2 are 26.6 dB and 28.2 dB, respectively, which indicates
that the noise level of the experimental cost function is small. The
inverse of the SNR can also be regarded as the “resolution” of the
cost function R = 1/SNR, hence the corresponding R of Q1 and
Q2 are 4.67% and 3.88%, respectively. Such a parameter indicates
that the photonic solver cannot distinguish two states if
R >|ACheo/ Cmin|> Where ACine, is the difference of their theoretical
cost functions and Cp,;, is the minimum of the cost function.

To further investigate how much the noise level would affect the
searching process near the ground state, the theoretical relative variation
of the cost function, C; = |ACheo/Crmin|, between the sampled state and
the previous state of all samplings are calculated in iterations 400—600.
Obviously, if R> C; and ACye, >0 in a single iteration, though the
theoretical cost function increases, which means that the sampled state
should not be accepted, the experimentally measured cost function might
decrease due to the noise. Therefore, a wrong acceptance of the sampled
state would occur. Among these samplings, it is found that the pro-
portions of the samples that satisfy R > C; and ACipeo > 0 are 29.9% and
26.8% for models 1 and 2, respectively. This indicates that our photonic

CHIP | VOL 4 | SPRING 2025 Ouyang, J. et al. Chip

n each run of Q1 and Q2, respectively. The blue and red regions denote the standard

solver can distinguish two states in most iterations of the demonstrated
problems, hence high successful probabilities can be obtained even when
the tolerance coefficient is close to 1. The above analysis indicates that
our OVMM is quite stable and accurate during the solving process.

Computing speed and power consumption As mentioned in the
previous section, the calculation of the photonic solver includes the
pretreatment and the iterative sampling of the state vector. In the pre-
treatment, the eigendecomposition of the weight matrix of the given
problem is calculated to obtain the necessary transformation matrix of
the OVMM. In the experimental demonstration, the transformation
matrices of the OVMM are randomly generated; hence, we only discuss
the time consumption in the iterative sampling process.

The main sequence diagram of each sampling iteration is shown in
Fig. 5a. The clock rate of the FPGA is 245.76 MHz, which is corre-
sponding to the clock cycle of 7g = 4.069 ns. At t+ = 0, the FPGA
sends the TX (transmit) signal containing the voltages on the ampli-
tude modulators to the DAC. It is observed that the RX (receive) signal
appears at t 4019. Such latency is composed of five parts in
sequence: the DAC latency, the modulator response time, the propa-
gation time of lightwaves in the OVMM, the photodetector response
time, and the ADC latency. According to the frequency responses of
the modulator and the photodetector shown in Fig. 5b, the -3 dB
bandwidth fg of the amplitude modulator is 28.0 GHz and that of the
photodetector at -2 V bias voltage is 41.3 GHz. Therefore, the
response time of the modulator and the photodetector can be estimated

4, 100117 (2025) 50f 8
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to be 7y = 12.5 ps and 7, = 8.5 ps, respectively, according to 7=
0.35/ fB’w . The length from the amplitude modulator to the photode-
tector is 9.3 mm, and the group index of silicon under the working
temperature of 37 °C is 428" hence the propagation time of light is
132.7 ps. Thus, the computing of the OVMM takes Toymm = 153.7 ps
in each iteration, and the total latency of the DAC, ADC, and signal
synchronization can be estimated as Tpac/apc= 102.6 ns, which
indicates that Toymm is much lower than Tpac/apc. After the signal
processing operations, the processed RX signal appears at t = 451,
and the sampled signal rises at t = 47ty and falls at t = 517. Ac-
cording to the experimental results, each iteration takes Tjer = 265.1
ns. Thus, the time consumption of the heuristic algorithm on the FPGA
takes TFpGA = Titer — J1f9p = 57.6 ns.

In each iteration, calculating the cost function requires the multi-
plication between an N x N real matrix and an N x 1 vector, which in-
cludes N? floating-point operations (FLOPs). In the experimental
demonstration, the computing speed of the OVMM on chip is 1.57
GFLOP/s, which is mainly limited by the latency of the digital-analog
conversion. As mentioned above, the computing time of the OVMM
is much lower than the total latency of the DAC, ADC, and signal
synchronization, which is the actual bottleneck of the computation
speed of the photonic solver. Adopting the low-latency DAC, ADC, and
the FPGA with a higher operating frequency would reduce the iteration
time, but the improvement would be very limited in the near future. An
alternative approach is to utilize all-analog and hybrid optoelectronic
architecture. Recently, the all-analog chip combining electronic and
light computing (ACCEL) for vision tasks has been reported, in which
the conversion between digital and analog signals are not involved, and
the superiority of the photonic chip is fully exploited“. Likewise, if the
latency of the digital-analog conversion can be overcome, the maximum
computing speed of our photonic chip can be estimated as N2/
TovmM = 1.66 TFLOP/s, and the corresponding area efficiency of the
photonic chip is 44.4 GFLOP/mm? with the chip area of 37.5 mm?>.
Another approach is to operate the OVMM with the pipelining method,
where the data input and output are uninterrupted. Consequently, the
computing speed only depends on the bandwidth of the modulator and
the detector, rather than the propagation time of lightwave and the la-
tency from the digital-analog conversion, and the computing speed
would achieve N?/max(mm, 7p) =20.5 TFLOP/s**. In the future work,
more compact chip sizes and more channels of the OVMM based on
advanced fabrications would benefit both the computing speed and the
area efficiency of the photonic chip.
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The power consumption of the presented photonic chip can be
estimated as follows. When the applied voltages on all phase shifters are
7 V and O V in the MZI array, the power consumption of the driving
board is p; = 46.67 W and p, = 45.95 W, respectively. Therefore,
the power consumption of the photonic chip is estimated to be
p1 —p2 = 0.72 W, which is proportional to the number of the thermo-
optic phase shifters, N log, N+ 3N /2. The energy efficiency of the
chip is 0.458 nJ/FLOP in the current experimental demonstration
(corresponding to the computing speed of 1.57 GFLOP/s), if the latency
of the digital-analog conversion can be overcome like that in the all-
analog architecture, the energy efficiency could be as high as 434 fJ/
FLOP, while only considering the maximum computing speed of the
photonic chip (1.66 TFLOP/s). Therefore, it is believed that the pho-
tonic chip is capable of achieving higher computing speed and
energy efficiency.

CONCLUSIONS

We have proposed and demonstrated a 16-channel photonic solver
based on an integrated photonic chip for QUBO problems. The
amplitude modulators, the MZI array for the optical matrix trans-
formation, and the photodetectors were all integrated on the same
photonic chip to achieve low optical latency. The calculation of the cost
function can be accelerated with the photonic chip, while heuristic al-
gorithms are employed on the FPGA to search for the optimal solution.
Two randomly generated 16-dimensional QUBO problems have been
successfully solved with the photonic solver, and the successful prob-
abilities of both problems are larger than 0.94 with the tolerance coef-
ficient of 0.98. Such results indicate the high stability and low noise
level of the photonic solver. According to the experimental results, each
iteration takes 265.1 ns, which is mainly ascribed to the DAC and ADC
latency (162.6 ns). The maximum computing speed and the area effi-
ciency of the photonic chip are 1.66 TFLOP/s and 44.4 GFLOP/mm?,
respectively. The energy efficiency is 0.458 nJ/FLOP in the demon-
stration. Our proposed photonic solver shows the possibility of the in-
tegrated photonic system to accelerate the solving process of
computationally complex problems.
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