清华大学电子工程系微纳光电子学实验室欢迎您! 中文
返回

Study on “Phonon lasing enhanced mass sensor with zeptogram resolution under ambient conditions” was published in Chip

The paper "Phonon lasing enhanced mass sensor with zeptogram resolution under ambient conditions" by PhD student Fei Pan, etc. was successful published in Chip on July 12, 2023 (DOI: 10.1016/j.chip.2023.100050).

Mass spectrometry is a powerful analytical technique which is widely adopted to determine the molecular mass of samples, elemental composition and structural information, making it an indispensable tool in qualitative and quantitative applications including biological research, chemical measurements, astrophysical analysis and environmental monitoring. Mass sensing based on the mechanical oscillators is realized by detecting the mechanical frequency shift when adding the detected particles onto the oscillator. However, due to the large mechanical dissipation in the ambient environment, ultrasensitive mass sensing with zeptogram or higher resolution usually needs a vacuum or cryogenic environment.

In this work, a new approach that utilizes phonon lasing to achieve an ultra-narrow mechanical linewidth, allowing a predicted maximum mass resolution up to zeptograms at room temperature in an ambient environment. With blue-detuned laser pumping, the mechanical linewidth is narrowed from 2.6 MHz to 5.4 kHz after phonon lasing. In the mass sensing experiment, a small amount of material (silica) is deposited on the side wall of the optomechanical cavity, resulting in the mechanical frequency shift. Therefore, the minimum detectable mass is predicted to be 6.5×10-20 g according to the frequency responsivity. This resolution is an order of magnitude higher than other reported approaches under ambient conditions, proposing a possible next-generation on-chip mass sensing scheme. 

image.png

Fei Pan, Kaiyu Cui,* Yidong Huang,* Ziming Chen, Ning Wu, Guoren Bai, Zhilei Huang, Xue Feng, Fang Liu, and Wei Zhang, Phonon lasing enhanced mass sensor with zeptogram resolution under ambient conditions. Chip 2023, 100050. https://doi.org/10.1016/j.chip.2023.100050


2023年07月29日

News

Our Lab. Won Third Place in 2025 Tsinghua "Shimen Cup" Badminton Tournament2025-04-03

People’s Daily Online reported our latest research about the spectral convolutional neural network2025-03-26

Professor Yidong Huang led a team to visit Advanced Fiber Resources Co. Ltd.2025-03-22

Professor Fang Liu delivered an invitation talk at iSPN 20252025-02-27

Prof. Kaiyu Cui published an invited “Lab to Fab” review paper in Nature Reviews Electrical Engineering 2025-02-20

The mid-term report meeting for the core optical fiber network construction of the Integrated Quantum Network Testbed was successfully held2025-01-25

Ph.D candidate Shijie Rao’s work about spectral convolutional neural network was published on Nature Communications2025-01-16

Ph.D candidate Jingyuan Liu’s work about reconfigurable entanglement distribution network was published on Science Advances2025-01-05

Professor Wei Zhang delivered a keynote talk on the 2nd International Conference on Optical Communication and Optical Information Processing (OCOIP2024)2025-01-04

Prof. Kaiyu Cui develop and obtain approval for the first group standard of spectral pathology diagnosis2024-12-30

Professor Kaiyu Cui gave an invited presentation at the 20th Chinese Congress on Image and Graphics of Young Scientists2024-12-23

The laboratory organized a meeting for mentors and 2024 undergraduate freshmen2024-12-20

Professor Wei Zhang attended the 6th Young Scientists Forum on Integrated Quantum Photonics and provided an invited talk2024-12-16

Professor Wei Zhang attended 2024 Photonics West China and provided an invited talk2024-12-11

Prof. Yidong Huang was invited to attend the 7th Microelectronics Intelligence China Conference and give a speech2024-12-06